Mercurial > repos > imgteam > superdsm
comparison run-superdsm.py @ 0:1b0fc671187f draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/superdsm/ commit 4d66ff6e8a2a842e44e8d0d7102dfb3ac78dca7e
author | imgteam |
---|---|
date | Sun, 25 Jun 2023 21:48:40 +0000 |
parents | |
children | 700ae37e5c69 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1b0fc671187f |
---|---|
1 """ | |
2 Copyright 2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. | |
3 | |
4 Distributed under the MIT license. | |
5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | |
6 | |
7 """ | |
8 | |
9 import argparse | |
10 import imghdr | |
11 import os | |
12 import pathlib | |
13 import shutil | |
14 import tempfile | |
15 | |
16 import ray | |
17 import superdsm.automation | |
18 import superdsm.io | |
19 import superdsm.render | |
20 | |
21 | |
22 if __name__ == "__main__": | |
23 parser = argparse.ArgumentParser(description='Segmentation of cell nuclei in 2-D fluorescence microscopy images') | |
24 parser.add_argument('image', help='Path to the input image') | |
25 parser.add_argument('cfg', help='Path to the file containing the configuration') | |
26 parser.add_argument('masks', help='Path to the file containing the segmentation masks') | |
27 parser.add_argument('overlay', help='Path to the file containing the overlay of the segmentation results') | |
28 parser.add_argument('seg_border', type=int) | |
29 parser.add_argument('slots', type=int) | |
30 args = parser.parse_args() | |
31 | |
32 if args.slots >= 2: | |
33 num_threads_per_process = 2 | |
34 num_processes = args.slots // num_threads_per_process | |
35 else: | |
36 num_threads_per_process = 1 | |
37 num_processes = 1 | |
38 | |
39 os.environ['MKL_NUM_THREADS'] = str(num_threads_per_process) | |
40 os.environ['OPENBLAS_NUM_THREADS'] = str(num_threads_per_process) | |
41 os.environ['MKL_DEBUG_CPU_TYPE'] = '5' | |
42 | |
43 ray.init(num_cpus=num_processes, log_to_driver=True) | |
44 | |
45 with tempfile.TemporaryDirectory() as tmpdirname: | |
46 tmpdir = pathlib.Path(tmpdirname) | |
47 img_ext = imghdr.what(args.image) | |
48 img_filepath = tmpdir / f'input.{img_ext}' | |
49 shutil.copy(str(args.image), img_filepath) | |
50 | |
51 pipeline = superdsm.pipeline.create_default_pipeline() | |
52 cfg = superdsm.config.Config() | |
53 img = superdsm.io.imread(img_filepath) | |
54 data, cfg, _ = superdsm.automation.process_image(pipeline, cfg, img) | |
55 | |
56 with open(args.cfg, 'w') as fp: | |
57 cfg.dump_json(fp) | |
58 | |
59 overlay = superdsm.render.render_result_over_image(data, border_width=args.seg_border, normalize_img=False) | |
60 superdsm.io.imwrite(args.overlay, overlay) | |
61 | |
62 masks = superdsm.render.rasterize_labels(data) | |
63 superdsm.io.imwrite(args.masks, masks) |