Mercurial > repos > imgteam > superdsm
diff run-superdsm.py @ 0:1b0fc671187f draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tools/superdsm/ commit 4d66ff6e8a2a842e44e8d0d7102dfb3ac78dca7e
author | imgteam |
---|---|
date | Sun, 25 Jun 2023 21:48:40 +0000 |
parents | |
children | 700ae37e5c69 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/run-superdsm.py Sun Jun 25 21:48:40 2023 +0000 @@ -0,0 +1,63 @@ +""" +Copyright 2023 Leonid Kostrykin, Biomedical Computer Vision Group, Heidelberg University. + +Distributed under the MIT license. +See file LICENSE for detail or copy at https://opensource.org/licenses/MIT + +""" + +import argparse +import imghdr +import os +import pathlib +import shutil +import tempfile + +import ray +import superdsm.automation +import superdsm.io +import superdsm.render + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='Segmentation of cell nuclei in 2-D fluorescence microscopy images') + parser.add_argument('image', help='Path to the input image') + parser.add_argument('cfg', help='Path to the file containing the configuration') + parser.add_argument('masks', help='Path to the file containing the segmentation masks') + parser.add_argument('overlay', help='Path to the file containing the overlay of the segmentation results') + parser.add_argument('seg_border', type=int) + parser.add_argument('slots', type=int) + args = parser.parse_args() + + if args.slots >= 2: + num_threads_per_process = 2 + num_processes = args.slots // num_threads_per_process + else: + num_threads_per_process = 1 + num_processes = 1 + + os.environ['MKL_NUM_THREADS'] = str(num_threads_per_process) + os.environ['OPENBLAS_NUM_THREADS'] = str(num_threads_per_process) + os.environ['MKL_DEBUG_CPU_TYPE'] = '5' + + ray.init(num_cpus=num_processes, log_to_driver=True) + + with tempfile.TemporaryDirectory() as tmpdirname: + tmpdir = pathlib.Path(tmpdirname) + img_ext = imghdr.what(args.image) + img_filepath = tmpdir / f'input.{img_ext}' + shutil.copy(str(args.image), img_filepath) + + pipeline = superdsm.pipeline.create_default_pipeline() + cfg = superdsm.config.Config() + img = superdsm.io.imread(img_filepath) + data, cfg, _ = superdsm.automation.process_image(pipeline, cfg, img) + + with open(args.cfg, 'w') as fp: + cfg.dump_json(fp) + + overlay = superdsm.render.render_result_over_image(data, border_width=args.seg_border, normalize_img=False) + superdsm.io.imwrite(args.overlay, overlay) + + masks = superdsm.render.rasterize_labels(data) + superdsm.io.imwrite(args.masks, masks)