Mercurial > repos > iuc > abstracts_by_pmids
view pmids_to_pubtator_matrix.R @ 0:ff904894ccaa draft default tip
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tools/simtext commit 63a5e13cf89cdd209d20749c582ec5b8dde4e208"
author | iuc |
---|---|
date | Wed, 24 Mar 2021 08:32:54 +0000 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript #tool: pmids_to_pubtator_matrix # #The tool uses all PMIDs per row and extracts "Gene", "Disease", "Mutation", "Chemical" and "Species" terms of the #corresponding abstracts, using PubTator annotations. The user can choose from which categories terms should be extracted. #The extracted terms are united in one large binary matrix, with 0= term not present in abstracts of that row and 1= term #present in abstracts of that row. The user can decide if the extracted scientific terms should be extracted and used as #they are or if they should be grouped by their geneIDs/ meshIDs (several terms can often be grouped into one ID). #äAlso, by default all terms are extracted, otherwise the user can specify a number of most frequent words to be extracted per row. # #Input: Output of abstracts_by_pmids or tab-delimited table with columns containing PMIDs. #The names of the PMID columns should start with "PMID", e.g. "PMID_1", "PMID_2" etc. # #Output: Binary matrix in that each column represents one of the extracted terms. # # usage: $ pmids_to_pubtator_matrix.R [-h] [-i INPUT] [-o OUTPUT] [-n NUMBER] # [-c {Genes,Diseases,Mutations,Chemicals,Species} [{Genes,Diseases,Mutations,Chemicals,Species} ...]] # # optional arguments: # -h, --help show help message # -i INPUT, --input INPUT input file name. add path if file is not in workind directory # -n NUMBER, --number NUMBER Number of most frequent terms/IDs to extract. By default all terms/IDs are extracted. # -o OUTPUT, --output OUTPUT output file name. [default "pmids_to_pubtator_matrix_output"] # -c {Gene,Disease,Mutation,Chemical,Species} [{Genes,Diseases,Mutations,Chemicals,Species} ...], --categories {Gene,Disease,Mutation,Chemical,Species} [{Gene,Disease,Mutation,Chemical,Species} ...] # Pubtator categories that should be considered. [default "('Gene', 'Disease', 'Mutation','Chemical')"] if ("--install_packages" %in% commandArgs()) { print("Installing packages") if (!require("argparse")) install.packages("argparse", repo = "http://cran.rstudio.com/"); if (!require("stringr")) install.packages("stringr", repo = "http://cran.rstudio.com/"); if (!require("RCurl")) install.packages("RCurl", repo = "http://cran.rstudio.com/"); if (!require("stringi")) install.packages("stringi", repo = "http://cran.rstudio.com/"); } suppressPackageStartupMessages(library("argparse")) library("stringr") library("RCurl") library("stringi") parser <- ArgumentParser() parser$add_argument("-i", "--input", help = "input fie name. add path if file is not in workind directory") parser$add_argument("-o", "--output", default = "pmids_to_pubtator_matrix_output", help = "output file name. [default \"%(default)s\"]") parser$add_argument("-c", "--categories", choices = c("Gene", "Disease", "Mutation", "Chemical", "Species"), nargs = "+", default = c("Gene", "Disease", "Mutation", "Chemical"), help = "Pubtator categories that should be considered. [default \"%(default)s\"]") parser$add_argument("-b", "--byid", action = "store_true", default = FALSE, help = "If you want to find common gene IDs / mesh IDs instead of scientific terms.") parser$add_argument("-n", "--number", default = NULL, type = "integer", help = "Number of most frequent terms/IDs to extract. By default all terms/IDs are extracted.") parser$add_argument("--install_packages", action = "store_true", default = FALSE, help = "If you want to auto install missing required packages.") args <- parser$parse_args() data <- read.delim(args$input, stringsAsFactors = FALSE, header = TRUE, sep = "\t") pmid_cols_index <- grep(c("PMID"), names(data)) word_matrix <- data.frame() dict_table <- data.frame() pmids_count <- 0 pubtator_max_ids <- 100 merge_pubtator_table <- function(out_data, table) { out_data <- unlist(strsplit(out_data, "\n", fixed = T)) for (i in 3:length(out_data)) { temps <- unlist(strsplit(out_data[i], "\t", fixed = T)) if (length(temps) == 5) { temps <- c(temps, NA) } if (length(temps) == 6) { table <- rbind(table, temps) } } return(table) } get_pubtator_terms <- function(pmids) { table <- NULL for (pmid_split in split(pmids, ceiling(seq_along(pmids) / pubtator_max_ids))) { out_data <- NULL try_num <- 1 t_0 <- Sys.time() while (TRUE) { # Timing check: kill at 3 min if (try_num > 1) { cat("Connection problem. Please wait. Try number:", try_num, "\n") Sys.sleep(time = 2 * try_num) } try_num <- try_num + 1 t_1 <- Sys.time() if (as.numeric(difftime(t_1, t_0, units = "mins")) > 3) { message("Killing the request! Something is not working. Please, try again later", "\n") return(table) } out_data <- tryCatch({ getURL(paste("https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/export/pubtator?pmids=", paste(pmid_split, collapse = ","), sep = "")) }, error = function(e) { print(e) next }, finally = { Sys.sleep(0) }) if (!is.null(out_data)) { table <- merge_pubtator_table(out_data, table) break } } } return(table) } extract_category_terms <- function(table, categories) { index_categories <- c() categories <- as.character(unlist(categories)) if (ncol(table) == 6) { for (i in categories) { tmp_index <- grep(TRUE, i == as.character(table[, 5])) if (length(tmp_index) > 0) { index_categories <- c(index_categories, tmp_index) } } table <- as.data.frame(table, stringsAsFactors = FALSE) table <- table[index_categories, c(4, 6)] table <- table[!is.na(table[, 2]), ] table <- table[!(table[, 2] == "NA"), ] table <- table[!(table[, 1] == "NA"), ] }else{ return(NULL) } } extract_frequent_ids_or_terms <- function(table) { if (is.null(table)) { return(NULL) break } if (args$byid) { if (!is.null(args$number)) { #retrieve top X mesh_ids table_mesh <- as.data.frame(table(table[, 2])) colnames(table_mesh)[1] <- "mesh_id" table <- table[order(table_mesh$Freq, decreasing = TRUE), ] table <- table[1:min(args$number, nrow(table_mesh)), ] table_mesh$mesh_id <- as.character(table_mesh$mesh_id) #subset table for top X mesh_ids table <- table[which(as.character(table$V6) %in% as.character(table_mesh$mesh_id)), ] table <- table[!duplicated(table[, 2]), ] } else { table <- table[!duplicated(table[, 2]), ] } } else { if (!is.null(args$number)) { table[, 1] <- tolower(as.character(table[, 1])) table <- as.data.frame(table(table[, 1])) colnames(table)[1] <- "term" table <- table[order(table$Freq, decreasing = TRUE), ] table <- table[1:min(args$number, nrow(table)), ] table$term <- as.character(table$term) } else { table[, 1] <- tolower(as.character(table[, 1])) table <- table[!duplicated(table[, 1]), ] } } return(table) } #for all PMIDs of a row get PubTator terms and add them to the matrix for (i in seq(nrow(data))) { pmids <- as.character(data[i, pmid_cols_index]) pmids <- pmids[!pmids == "NA"] if (pmids_count > 10000) { cat("Break (10s) to avoid killing of requests. Please wait.", "\n") Sys.sleep(10) pmids_count <- 0 } pmids_count <- pmids_count + length(pmids) #get puptator terms and process them with functions if (length(pmids) > 0) { table <- get_pubtator_terms(pmids) table <- extract_category_terms(table, args$categories) table <- extract_frequent_ids_or_terms(table) if (!is.null(table)) { colnames(table) <- c("term", "mesh_id") # add data in binary matrix if (args$byid) { mesh_ids <- as.character(table$mesh_id) if (length(mesh_ids) > 0) { word_matrix[i, mesh_ids] <- 1 cat(length(mesh_ids), " IDs for PMIDs of row", i, " were added", "\n") # add data in dictionary dict_table <- rbind(dict_table, table) dict_table <- dict_table[!duplicated(as.character(dict_table[, 2])), ] } } else { terms <- as.character(table[, 1]) if (length(terms) > 0) { word_matrix[i, terms] <- 1 cat(length(terms), " terms for PMIDs of row", i, " were added.", "\n") } } } } else { cat("No terms for PMIDs of row", i, " were found.", "\n") } } if (args$byid) { #change column names of matrix: exchange mesh ids/ids with term index_names <- match(names(word_matrix), as.character(dict_table[[2]])) names(word_matrix) <- dict_table[index_names, 1] } colnames(word_matrix) <- gsub("[^[:print:]]", "", colnames(word_matrix)) colnames(word_matrix) <- gsub('\"', "", colnames(word_matrix), fixed = TRUE) #merge duplicated columns word_matrix <- as.data.frame(do.call(cbind, by(t(word_matrix), INDICES = names(word_matrix), FUN = colSums))) #save binary matrix word_matrix <- as.matrix(word_matrix) word_matrix[is.na(word_matrix)] <- 0 cat("Matrix with ", nrow(word_matrix), " rows and ", ncol(word_matrix), " columns generated.", "\n") write.table(word_matrix, args$output, row.names = FALSE, sep = "\t", quote = FALSE)