Mercurial > repos > iuc > biapy
diff create_yaml.py @ 0:e434d9b9cd13 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/biapy/ commit 66b393a7118c81d86d0fd80780d2bd551c18f3f0
| author | iuc |
|---|---|
| date | Thu, 09 Oct 2025 07:42:36 +0000 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/create_yaml.py Thu Oct 09 07:42:36 2025 +0000 @@ -0,0 +1,262 @@ +import argparse + +import requests +import yaml + + +def download_yaml_template(workflow, dims, biapy_version=""): + """ + Download a YAML template for a specific workflow and dimensions. + + Parameters: + workflow (str): The workflow type. + dims (str): The dimensions (e.g., 2d, 3d). + biapy_version (str): The BiaPy version to use. + + Returns: + dict: The YAML template as a dictionary. + """ + template_dir_map = { + "SEMANTIC_SEG": "semantic_segmentation", + "INSTANCE_SEG": "instance_segmentation", + "DETECTION": "detection", + "DENOISING": "denoising", + "SUPER_RESOLUTION": "super-resolution", + "CLASSIFICATION": "classification", + "SELF_SUPERVISED": "self-supervised", + "IMAGE_TO_IMAGE": "image-to-image", + } + template_name = ( + template_dir_map[workflow] + + "/" + + dims.lower() + "_" + template_dir_map[workflow] + ".yaml" + ) + + url = ( + f"https://raw.githubusercontent.com/BiaPyX/BiaPy/" + f"refs/tags/v{biapy_version}/templates/{template_name}" + ) + print(f"Downloading YAML template from {url}") + response = requests.get(url) + if response.status_code != 200: + raise RuntimeError( + f"Failed to download YAML template: {response.status_code}" + ) + return yaml.safe_load(response.text) + + +def tuple_to_list(obj): + """Convert tuples to lists recursively.""" + if isinstance(obj, tuple): + return list(obj) + if isinstance(obj, dict): + return {k: tuple_to_list(v) for k, v in obj.items()} + if isinstance(obj, list): + return [tuple_to_list(v) for v in obj] + return obj + + +def main(): + parser = argparse.ArgumentParser( + description="Generate a YAML configuration from given arguments." + ) + parser.add_argument( + '--input_config_path', default='', type=str, + help="Input configuration file to reuse" + ) + parser.add_argument( + '--new_config', action='store_true', + help="Whether to create a new config or reuse an existing one." + ) + parser.add_argument( + '--out_config_path', required=True, type=str, + help="Path to save the generated YAML configuration." + ) + parser.add_argument( + '--workflow', default='semantic', type=str, + choices=['semantic', 'instance', 'detection', 'denoising', + 'sr', 'cls', 'sr2', 'i2i'], + ) + parser.add_argument( + '--dims', default='2d', type=str, + choices=['2d_stack', '2d', '3d'], + help="Number of dimensions for the problem" + ) + parser.add_argument( + '--obj_slices', default='', type=str, + choices=['', '1-5', '5-10', '10-20', '20-60', '60+'], + help="Number of slices for the objects in the images" + ) + parser.add_argument( + '--obj_size', default='0-25', type=str, + choices=['0-25', '25-100', '100-200', '200-500', '500+'], + help="Size of the objects in the images" + ) + parser.add_argument( + '--img_channel', default=1, type=int, + help="Number of channels in the input images" + ) + parser.add_argument( + '--model_source', default='biapy', + choices=['biapy', 'bmz', 'torchvision'], + help="Source of the model." + ) + parser.add_argument( + '--model', default='', type=str, + help=("Path to the model file if using a pre-trained model " + "from BiaPy or name of the model within BioImage " + "Model Zoo or TorchVision.") + ) + parser.add_argument( + '--raw_train', default='', type=str, + help="Path to the training raw data." + ) + parser.add_argument( + '--gt_train', default='', type=str, + help="Path to the training ground truth data." + ) + parser.add_argument( + '--test_raw_path', default='', type=str, + help="Path to the testing raw data." + ) + parser.add_argument( + '--test_gt_path', default='', type=str, + help="Path to the testing ground truth data." + ) + parser.add_argument( + '--biapy_version', default='', type=str, + help="BiaPy version to use." + ) + + args = parser.parse_args() + + if args.new_config: + workflow_map = { + "semantic": "SEMANTIC_SEG", + "instance": "INSTANCE_SEG", + "detection": "DETECTION", + "denoising": "DENOISING", + "sr": "SUPER_RESOLUTION", + "cls": "CLASSIFICATION", + "sr2": "SELF_SUPERVISED", + "i2i": "IMAGE_TO_IMAGE", + } + workflow_type = workflow_map[args.workflow] + + if args.dims == "2d_stack": + ndim = "2D" + as_stack = True + elif args.dims == "2d": + ndim = "2D" + as_stack = True + elif args.dims == "3d": + ndim = "3D" + as_stack = False + + config = download_yaml_template( + workflow_type, ndim, biapy_version=args.biapy_version + ) + + config["PROBLEM"]["TYPE"] = workflow_type + config["PROBLEM"]["NDIM"] = ndim + config["TEST"]["ANALIZE_2D_IMGS_AS_3D_STACK"] = as_stack + + if args.model_source == "biapy": + config["MODEL"]["SOURCE"] = "biapy" + if args.model: + config["MODEL"]["LOAD_CHECKPOINT"] = True + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = True + config.setdefault("PATHS", {}) + config["PATHS"]["CHECKPOINT_FILE"] = args.model + else: + config["MODEL"]["LOAD_CHECKPOINT"] = False + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False + elif args.model_source == "bmz": + config["MODEL"]["SOURCE"] = "bmz" + config["MODEL"]["LOAD_CHECKPOINT"] = False + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False + config.setdefault("MODEL", {}).setdefault("BMZ", {}) + config["MODEL"]["BMZ"]["SOURCE_MODEL_ID"] = args.model + elif args.model_source == "torchvision": + config["MODEL"]["SOURCE"] = "torchvision" + config["MODEL"]["LOAD_CHECKPOINT"] = False + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False + config["MODEL"]["TORCHVISION_MODEL_NAME"] = args.model + + obj_size_map = { + "0-25": (256, 256), + "25-100": (256, 256), + "100-200": (512, 512), + "200-500": (512, 512), + "500+": (1024, 1024), + } + obj_size = obj_size_map[args.obj_size] + + obj_slices_map = { + "": -1, + "1-5": 5, + "5-10": 10, + "10-20": 20, + "20-60": 40, + "60+": 80, + } + obj_slices = obj_slices_map[args.obj_slices] + if config["PROBLEM"]["NDIM"] == "2D": + config["DATA"]["PATCH_SIZE"] = obj_size + (args.img_channel,) + else: + assert obj_slices != -1, ( + "For 3D problems, obj_slices must be specified." + ) + config["DATA"]["PATCH_SIZE"] = ( + (obj_slices,) + obj_size + (args.img_channel,) + ) + config["DATA"]["PATCH_SIZE"] = str(config["DATA"]["PATCH_SIZE"]) + else: + assert args.input_config_path, ( + "Input configuration path must be specified when not " + "creating a new config." + ) + with open(args.input_config_path, 'r', encoding='utf-8') as f: + config = yaml.safe_load(f) + + if args.model: + config["MODEL"]["SOURCE"] = "biapy" + config["MODEL"]["LOAD_CHECKPOINT"] = True + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = True + config.setdefault("PATHS", {}) + config["PATHS"]["CHECKPOINT_FILE"] = args.model + else: + config["MODEL"]["LOAD_CHECKPOINT"] = False + config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False + + if args.raw_train: + config["TRAIN"]["ENABLE"] = True + config["DATA"]["TRAIN"]["PATH"] = args.raw_train + config["DATA"]["TRAIN"]["GT_PATH"] = args.gt_train + else: + config["TRAIN"]["ENABLE"] = False + + if args.test_raw_path: + config["TEST"]["ENABLE"] = True + config["DATA"]["TEST"]["PATH"] = args.test_raw_path + if args.test_gt_path: + config["DATA"]["TEST"]["LOAD_GT"] = True + config["DATA"]["TEST"]["GT_PATH"] = args.test_gt_path + else: + config["DATA"]["TEST"]["LOAD_GT"] = False + else: + config["TEST"]["ENABLE"] = False + + # Always use safetensors in Galaxy + config["MODEL"]["OUT_CHECKPOINT_FORMAT"] = "safetensors" + + config = tuple_to_list(config) + + with open(args.out_config_path, 'w', encoding='utf-8') as f: + yaml.dump(config, f, default_flow_style=False) + + print(f"YAML configuration written to {args.out_config_path}") + + +if __name__ == "__main__": + main()
