Mercurial > repos > iuc > biapy
view create_yaml.py @ 0:e434d9b9cd13 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/biapy/ commit 66b393a7118c81d86d0fd80780d2bd551c18f3f0
| author | iuc |
|---|---|
| date | Thu, 09 Oct 2025 07:42:36 +0000 |
| parents | |
| children |
line wrap: on
line source
import argparse import requests import yaml def download_yaml_template(workflow, dims, biapy_version=""): """ Download a YAML template for a specific workflow and dimensions. Parameters: workflow (str): The workflow type. dims (str): The dimensions (e.g., 2d, 3d). biapy_version (str): The BiaPy version to use. Returns: dict: The YAML template as a dictionary. """ template_dir_map = { "SEMANTIC_SEG": "semantic_segmentation", "INSTANCE_SEG": "instance_segmentation", "DETECTION": "detection", "DENOISING": "denoising", "SUPER_RESOLUTION": "super-resolution", "CLASSIFICATION": "classification", "SELF_SUPERVISED": "self-supervised", "IMAGE_TO_IMAGE": "image-to-image", } template_name = ( template_dir_map[workflow] + "/" + dims.lower() + "_" + template_dir_map[workflow] + ".yaml" ) url = ( f"https://raw.githubusercontent.com/BiaPyX/BiaPy/" f"refs/tags/v{biapy_version}/templates/{template_name}" ) print(f"Downloading YAML template from {url}") response = requests.get(url) if response.status_code != 200: raise RuntimeError( f"Failed to download YAML template: {response.status_code}" ) return yaml.safe_load(response.text) def tuple_to_list(obj): """Convert tuples to lists recursively.""" if isinstance(obj, tuple): return list(obj) if isinstance(obj, dict): return {k: tuple_to_list(v) for k, v in obj.items()} if isinstance(obj, list): return [tuple_to_list(v) for v in obj] return obj def main(): parser = argparse.ArgumentParser( description="Generate a YAML configuration from given arguments." ) parser.add_argument( '--input_config_path', default='', type=str, help="Input configuration file to reuse" ) parser.add_argument( '--new_config', action='store_true', help="Whether to create a new config or reuse an existing one." ) parser.add_argument( '--out_config_path', required=True, type=str, help="Path to save the generated YAML configuration." ) parser.add_argument( '--workflow', default='semantic', type=str, choices=['semantic', 'instance', 'detection', 'denoising', 'sr', 'cls', 'sr2', 'i2i'], ) parser.add_argument( '--dims', default='2d', type=str, choices=['2d_stack', '2d', '3d'], help="Number of dimensions for the problem" ) parser.add_argument( '--obj_slices', default='', type=str, choices=['', '1-5', '5-10', '10-20', '20-60', '60+'], help="Number of slices for the objects in the images" ) parser.add_argument( '--obj_size', default='0-25', type=str, choices=['0-25', '25-100', '100-200', '200-500', '500+'], help="Size of the objects in the images" ) parser.add_argument( '--img_channel', default=1, type=int, help="Number of channels in the input images" ) parser.add_argument( '--model_source', default='biapy', choices=['biapy', 'bmz', 'torchvision'], help="Source of the model." ) parser.add_argument( '--model', default='', type=str, help=("Path to the model file if using a pre-trained model " "from BiaPy or name of the model within BioImage " "Model Zoo or TorchVision.") ) parser.add_argument( '--raw_train', default='', type=str, help="Path to the training raw data." ) parser.add_argument( '--gt_train', default='', type=str, help="Path to the training ground truth data." ) parser.add_argument( '--test_raw_path', default='', type=str, help="Path to the testing raw data." ) parser.add_argument( '--test_gt_path', default='', type=str, help="Path to the testing ground truth data." ) parser.add_argument( '--biapy_version', default='', type=str, help="BiaPy version to use." ) args = parser.parse_args() if args.new_config: workflow_map = { "semantic": "SEMANTIC_SEG", "instance": "INSTANCE_SEG", "detection": "DETECTION", "denoising": "DENOISING", "sr": "SUPER_RESOLUTION", "cls": "CLASSIFICATION", "sr2": "SELF_SUPERVISED", "i2i": "IMAGE_TO_IMAGE", } workflow_type = workflow_map[args.workflow] if args.dims == "2d_stack": ndim = "2D" as_stack = True elif args.dims == "2d": ndim = "2D" as_stack = True elif args.dims == "3d": ndim = "3D" as_stack = False config = download_yaml_template( workflow_type, ndim, biapy_version=args.biapy_version ) config["PROBLEM"]["TYPE"] = workflow_type config["PROBLEM"]["NDIM"] = ndim config["TEST"]["ANALIZE_2D_IMGS_AS_3D_STACK"] = as_stack if args.model_source == "biapy": config["MODEL"]["SOURCE"] = "biapy" if args.model: config["MODEL"]["LOAD_CHECKPOINT"] = True config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = True config.setdefault("PATHS", {}) config["PATHS"]["CHECKPOINT_FILE"] = args.model else: config["MODEL"]["LOAD_CHECKPOINT"] = False config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False elif args.model_source == "bmz": config["MODEL"]["SOURCE"] = "bmz" config["MODEL"]["LOAD_CHECKPOINT"] = False config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False config.setdefault("MODEL", {}).setdefault("BMZ", {}) config["MODEL"]["BMZ"]["SOURCE_MODEL_ID"] = args.model elif args.model_source == "torchvision": config["MODEL"]["SOURCE"] = "torchvision" config["MODEL"]["LOAD_CHECKPOINT"] = False config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False config["MODEL"]["TORCHVISION_MODEL_NAME"] = args.model obj_size_map = { "0-25": (256, 256), "25-100": (256, 256), "100-200": (512, 512), "200-500": (512, 512), "500+": (1024, 1024), } obj_size = obj_size_map[args.obj_size] obj_slices_map = { "": -1, "1-5": 5, "5-10": 10, "10-20": 20, "20-60": 40, "60+": 80, } obj_slices = obj_slices_map[args.obj_slices] if config["PROBLEM"]["NDIM"] == "2D": config["DATA"]["PATCH_SIZE"] = obj_size + (args.img_channel,) else: assert obj_slices != -1, ( "For 3D problems, obj_slices must be specified." ) config["DATA"]["PATCH_SIZE"] = ( (obj_slices,) + obj_size + (args.img_channel,) ) config["DATA"]["PATCH_SIZE"] = str(config["DATA"]["PATCH_SIZE"]) else: assert args.input_config_path, ( "Input configuration path must be specified when not " "creating a new config." ) with open(args.input_config_path, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) if args.model: config["MODEL"]["SOURCE"] = "biapy" config["MODEL"]["LOAD_CHECKPOINT"] = True config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = True config.setdefault("PATHS", {}) config["PATHS"]["CHECKPOINT_FILE"] = args.model else: config["MODEL"]["LOAD_CHECKPOINT"] = False config["MODEL"]["LOAD_MODEL_FROM_CHECKPOINT"] = False if args.raw_train: config["TRAIN"]["ENABLE"] = True config["DATA"]["TRAIN"]["PATH"] = args.raw_train config["DATA"]["TRAIN"]["GT_PATH"] = args.gt_train else: config["TRAIN"]["ENABLE"] = False if args.test_raw_path: config["TEST"]["ENABLE"] = True config["DATA"]["TEST"]["PATH"] = args.test_raw_path if args.test_gt_path: config["DATA"]["TEST"]["LOAD_GT"] = True config["DATA"]["TEST"]["GT_PATH"] = args.test_gt_path else: config["DATA"]["TEST"]["LOAD_GT"] = False else: config["TEST"]["ENABLE"] = False # Always use safetensors in Galaxy config["MODEL"]["OUT_CHECKPOINT_FORMAT"] = "safetensors" config = tuple_to_list(config) with open(args.out_config_path, 'w', encoding='utf-8') as f: yaml.dump(config, f, default_flow_style=False) print(f"YAML configuration written to {args.out_config_path}") if __name__ == "__main__": main()
