Mercurial > repos > iuc > dada2_dada
view test-data/gentest.R @ 9:00f5005840fa draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/dada2 commit 9bbc0898b9bbe73c7fc60ac162d80d749a7f97c1
author | iuc |
---|---|
date | Fri, 24 May 2024 11:41:58 +0000 |
parents | 2cfceb9f9b8e |
children |
line wrap: on
line source
library(dada2, quietly = TRUE) library(ggplot2, quietly = TRUE) sample_names <- c("F3D0_S188_L001", "F3D141_S207_L001") fwd <- c("F3D0_S188_L001_R1_001.fastq.gz", "F3D141_S207_L001_R1_001.fastq.gz") rev <- c("F3D0_S188_L001_R2_001.fastq.gz", "F3D141_S207_L001_R2_001.fastq.gz") filt_fwd <- c("filterAndTrim_F3D0_R1.fq.gz", "filterAndTrim_F3D141_R1.fq.gz") filt_rev <- c("filterAndTrim_F3D0_R2.fq.gz", "filterAndTrim_F3D141_R2.fq.gz") print("filterAndTrim") for (i in seq_len(fwd)) { ftout <- dada2::filterAndTrim(fwd[i], filt_fwd[i], rev[i], filt_rev[i]) b <- paste(strsplit(fwd[i], ".", fixed = TRUE)[[1]][1], "tab", sep = ".") write.table(ftout, b, quote = FALSE, sep = "\t", col.names = NA) } # In the test only the 1st data set is used t <- data.frame() t <- rbind(t, ftout[1, ]) colnames(t) <- colnames(ftout) rownames(t) <- rownames(ftout)[1] write.table(t, "filterAndTrim.tab", quote = FALSE, sep = "\t", col.names = NA) names(fwd) <- sample_names names(rev) <- sample_names names(filt_fwd) <- sample_names names(filt_rev) <- sample_names # Plot quality profile (just for one file, Galaxy compares with sim_size) print("plots") qp <- dada2::plotQualityProfile(fwd) ggsave("qualityProfile_fwd.pdf", qp, width = 20, height = 15, units = c("cm")) qp <- dada2::plotQualityProfile(rev) ggsave("qualityProfile_rev.pdf", qp, width = 20, height = 15, units = c("cm")) qp <- dada2::plotQualityProfile(fwd[1]) ggsave("qualityProfile.pdf", qp, width = 20, height = 15, units = c("cm")) # Plot complexity (just for one file, Galaxy compares with sim_size) cp <- dada2::plotComplexity(fwd) ggsave("complexity_fwd.pdf", cp, width = 20, height = 15, units = c("cm")) cp <- dada2::plotComplexity(rev) ggsave("complexity_rev.pdf", cp, width = 20, height = 15, units = c("cm")) cp <- dada2::plotComplexity(fwd[1]) ggsave("complexity.pdf", cp, width = 20, height = 15, units = c("cm")) # learn Errors print("learnErrors") err_fwd <- dada2::learnErrors(filt_fwd) saveRDS(err_fwd, file = "learnErrors_R1.Rdata") plot <- dada2::plotErrors(err_fwd) ggsave("learnErrors_R1.pdf", plot, width = 20, height = 15, units = c("cm")) err_rev <- dada2::learnErrors(filt_rev) saveRDS(err_rev, file = "learnErrors_R2.Rdata") plot <- dada2::plotErrors(err_rev) ggsave("learnErrors.pdf", plot, width = 20, height = 15, units = c("cm")) # dada print("dada") dada_fwd <- dada2::dada(filt_fwd, err_fwd) dada_rev <- dada2::dada(filt_rev, err_rev) for (id in sample_names) { saveRDS(dada_fwd[[id]], file = paste("dada_", id, "_R1.Rdata", sep = "")) saveRDS(dada_rev[[id]], file = paste("dada_", id, "_R2.Rdata", sep = "")) } # merge pairs print("mergePairs") merged <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev) for (id in sample_names) { saveRDS(merged[[id]], file = paste("mergePairs_", id, ".Rdata", sep = "")) } # make sequence table print("makeSequenceTable") seqtab <- makeSequenceTable(merged) write.table(t(seqtab), file = "makeSequenceTable.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA) reads_per_seqlen <- tapply(colSums(seqtab), factor(nchar(getSequences(seqtab))), sum) df <- data.frame(length = as.numeric(names(reads_per_seqlen)), count = reads_per_seqlen) pdf("makeSequenceTable.pdf") ggplot(data = df, aes(x = length, y = count)) + geom_col() + theme_bw() bequiet <- dev.off() # remove bimera print("removeBimera") seqtab_nochim <- dada2::removeBimeraDenovo(seqtab) write.table(t(seqtab), file = "removeBimeraDenovo.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA) # assign taxonomy/species tl <- "Level1,Level2,Level3,Level4,Level5" tl <- strsplit(tl, ",")[[1]] set.seed(42) print("assignTaxonomyAndSpecies") taxa <- dada2::assignTaxonomy(seqtab_nochim, "reference.fa.gz", outputBootstraps = TRUE, taxLevels = tl, multithread = 1) taxa$tax <- dada2::addSpecies(taxa$tax, "reference_species.fa.gz") write.table(taxa$tax, file = "assignTaxonomyAddspecies.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA) write.table(taxa$boot, file = "assignTaxonomyAddspecies_boot.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = NA) ## Generate extra test data for parameter testing print("alternatives") dada2::filterAndTrim(fwd, c("filterAndTrim_single_F3D0_R1.fq.gz", "filterAndTrim_single_F3D141_R1.fq.gz"), rm.phix = TRUE, orient.fwd = "TACGG") dada2::filterAndTrim(fwd, c("filterAndTrim_single_trimmers_F3D0_R1.fq.gz", "filterAndTrim_single_trimmers_F3D141_R1.fq.gz"), truncQ = 30, truncLen = 2, trimLeft = 150, trimRight = 2) dada2::filterAndTrim(fwd, c("filterAndTrim_single_filters_F3D0_R1.fq.gz", "filterAndTrim_single_filters_F3D141_R1.fq.gz"), maxLen = 255, minLen = 60, maxN = 100, minQ = 13, maxEE = 1) merged_nondef <- dada2::mergePairs(dada_fwd, filt_fwd, dada_rev, filt_rev, minOverlap = 8, maxMismatch = 1, justConcatenate = TRUE, trimOverhang = TRUE) for (id in sample_names) { saveRDS(merged_nondef[[id]], file = paste("mergePairs_", id, "_nondefault.Rdata", sep = "")) } rb_dada_fwd <- dada2::removeBimeraDenovo(dada_fwd[["F3D0_S188_L001"]]) write.table(rb_dada_fwd, file = "removeBimeraDenovo_F3D0_dada_uniques.tab", quote = FALSE, sep = "\t", row.names = TRUE, col.names = FALSE) rb_merged <- dada2::removeBimeraDenovo(merged, method = "pooled") saveRDS(rb_merged, file = "removeBimeraDenovo_F3D0_mergepairs.Rdata") # SeqCounts get_n <- function(x) { sum(dada2::getUniques(x)) } print("seqCounts ft") samples <- list() samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1) dname <- "filter" tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] names(tdf) <- paste(dname, names(tdf)) tdf <- cbind(data.frame(samples = names(samples)), tdf) write.table(tdf, "seqCounts_filter.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE) samples <- list() samples[["F3D0_S188_L001_R1_001.tab"]] <- read.table("F3D0_S188_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1) samples[["F3D141_S207_L001_R1_001.tab"]] <- read.table("F3D141_S207_L001_R1_001.tab", header = TRUE, sep = "\t", row.names = 1) dname <- "filter" tdf <- samples[["F3D0_S188_L001_R1_001.tab"]] tdf <- rbind(tdf, samples[["F3D141_S207_L001_R1_001.tab"]]) names(tdf) <- paste(dname, names(tdf)) tdf <- cbind(data.frame(samples = names(samples)), tdf) write.table(tdf, "seqCounts_filter_both.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE) print("seqCounts dada") samples <- list() samples[["dada_F3D0_S188_L001_R1.Rdata"]] <- readRDS("dada_F3D0_S188_L001_R1.Rdata") samples[["dada_F3D141_S207_L001_R1.Rdata"]] <- readRDS("dada_F3D141_S207_L001_R1.Rdata") dname <- "dadaF" tdf <- data.frame(samples = names(samples)) tdf[[dname]] <- sapply(samples, get_n) write.table(tdf, "seqCounts_dadaF.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE) print("seqCounts mp") samples <- list() samples[["mergePairs_F3D0_S188_L001.Rdata"]] <- readRDS("mergePairs_F3D0_S188_L001.Rdata") samples[["mergePairs_F3D141_S207_L001.Rdata"]] <- readRDS("mergePairs_F3D141_S207_L001.Rdata") dname <- "merge" tdf <- data.frame(samples = names(samples)) tdf[[dname]] <- sapply(samples, get_n) write.table(tdf, "seqCounts_merge.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE) print("seqCounts st") samples <- list() samples <- t(as.matrix(read.table("makeSequenceTable.tab", header = TRUE, sep = "\t", row.names = 1))) dname <- "seqtab" tdf <- data.frame(samples = row.names(samples)) tdf[[dname]] <- rowSums(samples) write.table(tdf, "seqCounts_seqtab.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE) print("seqCounts rb") samples <- list() samples <- t(as.matrix(read.table("removeBimeraDenovo.tab", header = TRUE, sep = "\t", row.names = 1))) dname <- "nochim" tdf <- data.frame(samples = row.names(samples)) tdf[[dname]] <- rowSums(samples) write.table(tdf, "seqCounts_nochim.tab", quote = FALSE, sep = "\t", row.names = FALSE, col.names = TRUE)