Mercurial > repos > iuc > decontaminator
diff models/model_10.py @ 0:b856d3d95413 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/decontaminator commit 3f8e87001f3dfe7d005d0765aeaa930225c93b72
author | iuc |
---|---|
date | Mon, 09 Jan 2023 13:27:09 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/models/model_10.py Mon Jan 09 13:27:09 2023 +0000 @@ -0,0 +1,28 @@ +from tensorflow.keras import layers, models + + +def launch(input_layer, hidden_layers): + output = input_layer + for hidden_layer in hidden_layers: + output = hidden_layer(output) + return output + + +def model(length, kernel_size=10, filters=512, dense_ns=512): + forward_input = layers.Input(shape=(length, 4)) + reverse_input = layers.Input(shape=(length, 4)) + hidden_layers = [ + layers.Conv1D(filters=filters, kernel_size=kernel_size), + layers.LeakyReLU(alpha=0.1), + layers.GlobalMaxPooling1D(), + layers.Dropout(0.1), + ] + forward_output = launch(forward_input, hidden_layers) + reverse_output = launch(reverse_input, hidden_layers) + output = layers.Concatenate()([forward_output, reverse_output]) + output = layers.Dense(dense_ns, activation='relu')(output) + output = layers.Dropout(0.1)(output) + output = layers.Dense(2, activation='softmax')(output) + model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output) + model_.compile(optimizer="adam", loss='binary_crossentropy', metrics='accuracy') + return model_