diff models/model_10.py @ 0:b856d3d95413 draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/decontaminator commit 3f8e87001f3dfe7d005d0765aeaa930225c93b72
author iuc
date Mon, 09 Jan 2023 13:27:09 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/models/model_10.py	Mon Jan 09 13:27:09 2023 +0000
@@ -0,0 +1,28 @@
+from tensorflow.keras import layers, models
+
+
+def launch(input_layer, hidden_layers):
+    output = input_layer
+    for hidden_layer in hidden_layers:
+        output = hidden_layer(output)
+    return output
+
+
+def model(length, kernel_size=10, filters=512, dense_ns=512):
+    forward_input = layers.Input(shape=(length, 4))
+    reverse_input = layers.Input(shape=(length, 4))
+    hidden_layers = [
+        layers.Conv1D(filters=filters, kernel_size=kernel_size),
+        layers.LeakyReLU(alpha=0.1),
+        layers.GlobalMaxPooling1D(),
+        layers.Dropout(0.1),
+    ]
+    forward_output = launch(forward_input, hidden_layers)
+    reverse_output = launch(reverse_input, hidden_layers)
+    output = layers.Concatenate()([forward_output, reverse_output])
+    output = layers.Dense(dense_ns, activation='relu')(output)
+    output = layers.Dropout(0.1)(output)
+    output = layers.Dense(2, activation='softmax')(output)
+    model_ = models.Model(inputs=[forward_input, reverse_input], outputs=output)
+    model_.compile(optimizer="adam", loss='binary_crossentropy', metrics='accuracy')
+    return model_