Mercurial > repos > iuc > schicexplorer_schiccluster
view scHicCluster.xml @ 2:baa3ae7ac42c draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/schicexplorer commit d350f8e73ae518245a21f9720f8282f06eb9cc5d
author | iuc |
---|---|
date | Fri, 14 Apr 2023 14:29:00 +0000 |
parents | 36e26166034d |
children |
line wrap: on
line source
<tool id="schicexplorer_schiccluster" name="@BINARY@" version="@TOOL_VERSION@.1" profile="@PROFILE@"> <description>clusters single-cell Hi-C interaction matrices on the raw data</description> <macros> <token name="@BINARY@">scHicCluster</token> <import>macros.xml</import> </macros> <expand macro="requirements" /> <command detect_errors="exit_code"><![CDATA[ @BINARY@ --matrix '$matrix_scooler' --numberOfClusters $numberOfClusters --clusterMethod $clusterMethod_selector #if $chromosomes: #set $chromosome = ' '.join([ '\'%s\'' % $chrom for $chrom in str($chromosomes).split(' ') ]) --chromosomes $chromosome #end if --dimensionReductionMethod $dimensionReductionMethod_selector --numberOfNearestNeighbors $numberOfNearestNeighbors --outFileName cluster_list.txt --threads @THREADS@ ]]></command> <inputs> <expand macro="matrix_scooler_macro"/> <param name="clusterMethod_selector" type="select" label="Cluster method:"> <option value="kmeans" selected="True">K-means</option> <option value="spectral" >Spectral clustering</option> </param> <param name="dimensionReductionMethod_selector" type="select" label="Apply dimension reduction:"> <option value="none" selected="True">No dimension reduction</option> <option value="knn" >Exact k-nearest neighbors</option> <option value="pca" >Principal components</option> </param> <param name="numberOfClusters" type="integer" value="7" label="Number of clusters" help='How many clusters should be computed by kmeans or spectral clustering' /> <param name="numberOfNearestNeighbors" type="integer" value="100" label="Number of nearest neighbors" help='How many nearest neighbors should be computed for the k-nn graph?' /> <param name='chromosomes' type='text' label='List of chromosomes to consider' help='Please separate the chromosomes by space'/> </inputs> <outputs> <data name="outFileName" from_work_dir="cluster_list.txt" format="txt" label="${tool.name} on ${on_string}: Cluster results"/> </outputs> <tests> <test> <param name='matrix_scooler' value='test_matrix.scool' /> <param name='clusterMethod_selector' value='kmeans' /> <param name='dimensionReductionMethod_selector' value='none' /> <param name='numberOfClusters' value='7' /> <output name="outFileName" file="scHicCluster/cluster_kmeans.txt" ftype="txt" compare="sim_size" delta="4000"/> </test> <test> <param name='matrix_scooler' value='test_matrix.scool' /> <param name='clusterMethod_selector' value='kmeans' /> <param name='dimensionReductionMethod_selector' value='none' /> <param name='numberOfClusters' value='7' /> <param name='chromosomes' value='chr1 chr2' /> <output name="outFileName" file="scHicCluster/cluster_kmeans_chromosomes.txt" ftype="txt" compare="sim_size" delta="4000"/> </test> <test> <param name='matrix_scooler' value='test_matrix.scool' /> <param name='clusterMethod_selector' value='spectral' /> <param name='dimensionReductionMethod_selector' value='knn' /> <param name='numberOfClusters' value='7' /> <output name="outFileName" file="scHicCluster/cluster_spectral_knn.txt" ftype="txt" compare="sim_size" delta="4000"/> </test> <test> <param name='matrix_scooler' value='test_matrix.scool' /> <param name='clusterMethod_selector' value='spectral' /> <param name='dimensionReductionMethod_selector' value='pca' /> <param name='numberOfClusters' value='7' /> <output name="outFileName" file="scHicCluster/cluster_spectral_pca.txt" ftype="txt" compare="sim_size" delta="4000"/> </test> </tests> <help><![CDATA[ Clustering on raw data ====================== scHicCluster uses kmeans or spectral clustering to associate each cell to a cluster and therefore to its cell cycle. The clustering can be run on the raw data, on a kNN computed via the exact euclidean distance or via PCA. Please consider also the other clustering and dimension reduction approaches of the scHicExplorer suite such as `scHicCluster`, `scHicClusterMinHash` and `scHicClusterSVL`. They can give you better results, can be faster or less memory demanding. For more information about scHiCExplorer please consider our documentation on readthedocs.io_ .. _readthedocs.io: http://schicexplorer.readthedocs.io/ ]]></help> <expand macro="citations" /> </tool>