Mercurial > repos > iuc > syndiva
comparison syndiva.py @ 0:0254731f047b draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/SynDivA commit 90c5ec603e2c6b8c49d2dc7ec1b1e97f9d8fb92c
author | iuc |
---|---|
date | Thu, 23 Jun 2022 22:32:13 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0254731f047b |
---|---|
1 #!/usr/bin/env python | |
2 # title : syndiva.py | |
3 # description : This script will analyze fasta files, look for restriction sites, | |
4 # cut the sequences around the restriction sites, | |
5 # translate the nucleic sequences into amino acids sequences. | |
6 # author : Fabienne Wong Jun Tai and Benjamin Dartigues | |
7 # creation date : 20121107 | |
8 # version : 1.0 - revised November 2012 | |
9 # version : 1.1 - revised March 2022 | |
10 # usage : python syndiva.py -i file.fasta -o /output/dir/ -p pattern -5 seq_restric_5'-3 seq_restric_3' | |
11 # notes : | |
12 # # python_version :3.7.11 | |
13 # # biopython_max_version :1.72 | |
14 # ============================================================================== | |
15 import math | |
16 import re | |
17 import subprocess | |
18 import sys | |
19 | |
20 import matplotlib | |
21 import numpy | |
22 from args import Args | |
23 from args import get_os_path_join, get_os_path_name | |
24 from Bio import pairwise2 | |
25 from Bio import SeqIO | |
26 from Bio.Seq import Seq | |
27 from Bio.Seq import translate | |
28 from Bio.SubsMat import MatrixInfo | |
29 | |
30 matplotlib.use('Agg') | |
31 from matplotlib import pyplot as plot # noqa: I202,E402 | |
32 | |
33 | |
34 args = Args() | |
35 # Variables initialization | |
36 directory = args.output_dir | |
37 mcl_file = get_os_path_join(directory, "mcl.in") | |
38 mcl_output = get_os_path_join(directory, "mcl.out") | |
39 html_file = get_os_path_join(directory, "syndiva_report.html") | |
40 graph_pic = get_os_path_join(directory, "distri.png") | |
41 input_file = get_os_path_name(args.input) | |
42 site_res_5 = args.site_res_5 | |
43 site_res_3 = args.site_res_3 | |
44 tag = {'mut': [], 'ok_stop_ext': [], 'stop': [], 'no_restric': [], 'no_multiple': [], 'amber': []} | |
45 all_seq = [] | |
46 all_seq_fasta = {} # dictionnary that will store information about all the sequences | |
47 good_seq = {} # dictionnary that will store information about the valid sequences | |
48 identical_clones = {} | |
49 var_seq_common = {} # dictionnary that will store the number of sequences that share the same variable parts | |
50 align_scores = [] | |
51 nb_var_part = 0 | |
52 | |
53 | |
54 def get_identity(str1, str2): | |
55 if len(str2) > len(str1): | |
56 return (len(str2) - len([i for i in range(len(str1)) if str1[i] != str2[i]])) / len(str2) | |
57 else: | |
58 return (len(str1) - len([i for i in range(len(str1)) if str1[i] != str2[i]])) / len(str1) | |
59 | |
60 | |
61 def reverse_complement(_seq): | |
62 return str(Seq(_seq).reverse_complement()) | |
63 | |
64 | |
65 def generate_aln(seq_dic, ids): # sourcery skip: use-join | |
66 # Multiple Sequence Alignment via ClustalO | |
67 _input = '' | |
68 for sequence_id in ids: | |
69 _input += '>%s\n%s\n' % (sequence_id, re.sub("(.{80})", "\\1\n", seq_dic[sequence_id]['prot'], re.DOTALL)) | |
70 p = subprocess.Popen(["clustalo", "-i", "-", "--outfmt", "clu"], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) | |
71 aln_out, aln_err = p.communicate(input=_input) | |
72 return aln_out | |
73 | |
74 | |
75 def report_html(_html_file, _tag, _all_seq, _good_seq, _all_seq_fasta, _identical_clones, _nb_var_part, _var_seq_common, _align_scores, _args): | |
76 # Generate the html file for the report | |
77 _all_seq.sort() | |
78 for key in _tag.keys(): | |
79 _tag[key].sort() | |
80 _good_seq = dict(sorted(_good_seq.items())) | |
81 good_ids = _good_seq.keys() | |
82 w = open(_html_file, 'w') | |
83 w.write( | |
84 '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" ' | |
85 'lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><title>SynDivA Report</title><link ' | |
86 'href="http://twitter.github.com/bootstrap/assets/css/bootstrap.css" rel="stylesheet" /><style type="text/css">body {padding-top: 40px;}.subhead {padding: 40px ' | |
87 '0;}.subhead h1 {font-size: 60px;}.fasta { font-family: Monaco, Menlo, Consolas, "Courier New", monospace; font-size: 12px;}code.grey{color: ' | |
88 '#636D71;}</style></head><body><a id="top"></a><div class="navbar navbar-fixed-top"><div class="navbar-inner"><div class="container"><a class="brand" href="#top">SynDivA ' | |
89 'Report</a><div class="nav-collapse collapse"><ul class="nav"><li><a href="#input">Input data</a></li><li><a href="#analysis">Sequences analysis</a></li><li><a ' | |
90 'href="#variable">Variable regions analysis</a></li><li><a href="#cluster">Clustering</a></li><li><a href="#stat">Statistics</a></li><li><a ' | |
91 'href="#annex">Annex</a></li></ul></div></div></div></div><div class="container-fluid"><header class="subhead"><h1>SynDivA Report</h1></header><div ' | |
92 'class="page-header"><a id="input"></a><h2>Input data</h2></div>') | |
93 | |
94 # Input data | |
95 w.write( | |
96 '<p>Input file:<br/><code class="grey">%s</code></p><p>Number of sequences in input file:<br/><code class="grey">%d</code></p><p>Pattern of the sequence bank:<br/><code ' | |
97 'class="grey">%s</code></p><p>5\' restriction site:<br/><code class="grey">%s</code></p><p>3\' restriction site:<br/><code class="grey">%s</code></p>' % ( | |
98 input_file, len(_all_seq), _args.pattern, _args.site_res_5, _args.site_res_3)) | |
99 | |
100 # Sequence analysis | |
101 w.write( | |
102 '<div class="page-header"><a id="analysis"></a><h2>Sequences analysis</h2></div><p>Caption:</p><ul><li class="text-success">Valid sequences that will be part of the next ' | |
103 'analysis </li><li class="text-warning">Good sequences but will not be part of the next analysis</li><li class="text-error">Rejected sequences</li></ul><table ' | |
104 'class="table table-striped table-bordered"><tr><th class="text-error">Absence of restriction sites</th><th class="text-error">Incorrect number of nucleotides between ' | |
105 'the restriction sites</th><th class="text-error">Stop codon <u>inside</u> the area of interest</th><th class="text-warning">Mutation in the conserved regions</th><th ' | |
106 'class="text-success">Valid sequences</th><th>Amber codon in the sequence (<u>inside</u> the area of interest)</th></tr>') | |
107 w.write( | |
108 '<tr><td class="text-error">%d sequence(s) (%.2f%%)</td><td class="text-error">%d sequence(s) (%.2f%%)</td><td class="text-error">%d sequence(s) (%.2f%%)</td><td ' | |
109 'class="text-warning">%d sequence(s) (%.2f%%)</td><td class="text-success">%d sequence(s) (%.2f%%)</td><td>%d sequence(s)</td></tr>' % ( | |
110 len(_tag['no_restric']), float(len(_tag['no_restric'])) / float(len(_all_seq)) * 100, len(_tag['no_multiple']), float(len(_tag['no_multiple'])) / float(len(_all_seq)) * 100, len(_tag['stop']), | |
111 float(len(_tag['stop'])) / float(len(_all_seq)) * 100, len(_tag['mut']), float(len(_tag['mut'])) / float(len(_all_seq)) * 100, len(good_ids), | |
112 float(len(good_ids)) / float(len(_all_seq)) * 100, | |
113 len(_tag['amber']))) | |
114 w.write( | |
115 '<tr><td class="text-error">%s</td><td class="text-error">%s</td><td class="text-error">%s</td><td class="text-warning">%s</td><td ' | |
116 'class="text-success">%s</td><td>%s</td></tr></table>' % ( | |
117 '<br/>'.join(_tag['no_restric']), '<br/>'.join(_tag['no_multiple']), '<br/>'.join(_tag['stop']), '<br/>'.join(_tag['mut']), '<br/>'.join(good_ids), '<br/>'.join(_tag['amber']))) | |
118 # Variable regions analysis | |
119 w.write( | |
120 '<div class="page-header"><a id="variable"></a><h2>Variable regions analysis</h2></div><p>The following group of sequences are identical clones on the variable ' | |
121 'regions:</p>') | |
122 identical_clones_seq = _identical_clones.keys() | |
123 if identical_clones_seq: | |
124 for seq in identical_clones_seq: | |
125 ids = list(set(_identical_clones[seq])) # return only one occurrence of each item in the list | |
126 w.write('<div class="row-fluid"><div class="span5"><pre>%d sequences (%.2f%% of valid sequences)<br/>%s</pre></div>' % ( | |
127 len(ids), float(len(ids)) / float(len(good_ids)) * 100, '<br/>'.join(ids))) | |
128 w.write('<div class="span3"><table class="table table-striped table-bordered"><thead><tr><th>Variable region</th><th>Repeated sequence</th></tr></thead><tbody>') | |
129 for z in range(len(_good_seq[ids[0]]['var'])): | |
130 w.write('<td>%d</td><td>%s</td></tr>' % (z + 1, _good_seq[ids[0]]['var'][z])) | |
131 w.write('</tbody></table></div></div>') | |
132 else: | |
133 w.write('<p>No clone was found.</p>') | |
134 | |
135 first = True | |
136 for i in range(_nb_var_part): | |
137 keys = [] | |
138 for k in _var_seq_common[str(i + 1)].keys(): | |
139 nb = _var_seq_common[str(i + 1)][k] | |
140 if nb > 1: | |
141 if first: | |
142 w.write( | |
143 '<p>Here\'s the distribution of the repeated sequences in variable regions:</p><table class="table table-striped table-bordered"><thead><tr><th>Variable ' | |
144 'region</th><th>Repeated sequence</th><th>Number of occurrences (percentage of valid sequences)</th></tr></thead><tbody>') | |
145 first = False | |
146 keys.append(k) | |
147 else: | |
148 keys.append(k) | |
149 nb = len(keys) | |
150 if nb != 0: | |
151 w.write('<tr>') | |
152 for z in range(nb): | |
153 if z == 0: | |
154 w.write('<td rowspan="%d">%d</td>' % (nb, i + 1)) | |
155 w.write('<td>%s</td><td>%d (%.2f%%)</td></tr>' % ( | |
156 keys[z], _var_seq_common[str(i + 1)][keys[z]], float(_var_seq_common[str(i + 1)][keys[z]]) / float(len(good_ids)) * 100)) | |
157 w.write('</tbody></table>') | |
158 # Clustering | |
159 w.write('<div class="page-header"><a id="cluster"></a><h2>Clustering</h2></div><p>The following clusters were generated by MCL:</p>') | |
160 for line in open(mcl_output, 'r'): | |
161 w.write('<div class="row-fluid"><div class="span6"><pre>%d sequences (%.2f%% of valid sequences)<br/>%s</pre></div></div>' % ( | |
162 len(line.split("\t")), float(len(line.split("\t"))) / float(len(good_ids)) * 100, '<br/>'.join(line.split("\t")))) | |
163 # Statistics | |
164 w.write('<div class="page-header"><a id="stat"></a><h2>Statistics</h2></div>') | |
165 w.write('<p>Here\'s some statistics about the valid sequences:</p><p>Mean for the pairwise alignement scores: %.2f<br/>Standard deviation: %.2f</p>' % ( | |
166 float(numpy.mean(_align_scores)), float(numpy.std(_align_scores)))) | |
167 w.write('<div class="row-fluid"><div class="span6"><img src="%s" alt="Distribution of the pairwise alignment score"></div>' % get_os_path_name(graph_pic)) | |
168 w.write('<div class="span6"><table class="table table-striped table-bordered"><thead><tr><th>Pairwise Alignment Score</th><th>Number of occurrences</th></tr></thead><tbody>') | |
169 uniq_scores = sorted(list(set(_align_scores))) | |
170 scores_dic = {} | |
171 for _score in uniq_scores: | |
172 scores_dic[_score] = _align_scores.count(_score) | |
173 scores_dic = dict(sorted(scores_dic.items())) | |
174 scores = scores_dic.items() | |
175 # scores.sort() | |
176 for el in scores: | |
177 w.write('<tr><td>%.2f</td><td>%d</td></tr>' % (el[0], el[1])) | |
178 w.write('</tbody></table></div></div>') | |
179 # Annex | |
180 w.write('<div class="page-header"><a id="annex"></a><h2>Annex</h2></div>') | |
181 w.write('<p><strong>Valid protein sequences</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') | |
182 for _id in good_ids: | |
183 w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _good_seq[_id]['prot'], re.DOTALL))) | |
184 w.write('</textarea>') | |
185 aln_out = generate_aln(_good_seq, good_ids) | |
186 w.write( | |
187 '<p>Multiple sequence alignment of the <strong>valid sequences</strong> generated by Clustal Omega:</p><textarea class="span8 fasta" type="text" rows="20" ' | |
188 'readonly="readonly">%s</textarea>' % str( | |
189 aln_out)) | |
190 | |
191 if _tag['no_multiple']: | |
192 w.write( | |
193 '<p><strong>Protein sequences with an incorrect number of nucleotides between the restriction sites</strong> in FASTA format:</p><textarea class="span8 fasta" ' | |
194 'type="text" rows="20" readonly="readonly">') | |
195 for _id in _tag['no_multiple']: | |
196 w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) | |
197 w.write('</textarea>') | |
198 | |
199 if _tag['mut']: | |
200 w.write('<p><strong>Mutated protein sequences</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') | |
201 for _id in _tag['mut']: | |
202 w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) | |
203 w.write('</textarea>') | |
204 aln_out = generate_aln(_all_seq_fasta, _tag['mut']) | |
205 | |
206 w.write( | |
207 '<p>Multiple sequence alignment of the <strong>mutated sequences</strong> generated by Clustal Omega:</p><textarea class="span8 fasta" type="text" rows="20" ' | |
208 'readonly="readonly">%s</textarea>' % str( | |
209 aln_out)) | |
210 | |
211 if _tag['stop']: | |
212 w.write('<p><strong>Protein sequences with a stop codon</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') | |
213 for _id in _tag['stop']: | |
214 w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) | |
215 w.write('</textarea>') | |
216 | |
217 if _tag['amber']: | |
218 w.write('<p><strong>Protein sequences with an amber codon</strong> in FASTA format:</p><textarea class="span8 fasta" type="text" rows="20" readonly="readonly">') | |
219 for _id in _tag['amber']: | |
220 w.write('>%s\n%s\n' % (_id, re.sub("(.{80})", "\\1\n", _all_seq_fasta[_id]['prot'], re.DOTALL))) | |
221 w.write('</textarea>') | |
222 | |
223 w.write('</div></body></html>') | |
224 w.close() | |
225 | |
226 | |
227 nb_seq = len(list(SeqIO.parse(args.input, "fasta"))) | |
228 | |
229 for seq_record in SeqIO.parse(args.input, "fasta"): | |
230 seq_id = seq_record.id | |
231 seq = str(seq_record.seq) | |
232 seq = seq.upper() | |
233 all_seq.append(seq_id) | |
234 # Checking if both restriction sites are present in the sequence | |
235 if site_res_5 in seq and site_res_3 in seq: | |
236 valid = True | |
237 else: | |
238 valid = False | |
239 tag['no_restric'].append(seq_id) | |
240 # If sequence has both restriction sites, checking if it is necessary to take the reverse complement strand | |
241 if valid: | |
242 site_res_5_pos = seq.index(site_res_5) | |
243 site_res_3_pos = seq.index(site_res_3) | |
244 # If site_res_5_pos > site_res_3_pos, reverse complement strand has to be calculated | |
245 if site_res_5_pos > site_res_3_pos: | |
246 # Checking if the number of nucleic acids between the restriction sites is a multiple of 3 | |
247 length = math.fabs((site_res_5_pos + len(site_res_5)) - site_res_3_pos) | |
248 valid = length % 3 == 0 | |
249 cut_seq = seq[:site_res_5_pos + len(site_res_5)] | |
250 cut_seq = reverse_complement(cut_seq) | |
251 | |
252 # Else if site_res_5_pos < site_res_3_pos, use the sequence as it is | |
253 else: | |
254 # Checking if the number of nucleic acids between the restriction sites is a multiple of 3 | |
255 length = math.fabs((site_res_3_pos + len(site_res_3)) - site_res_5_pos) | |
256 valid = length % 3 == 0 | |
257 cut_seq = seq[site_res_5_pos:] | |
258 # If the number of nucleic acids between the restriction sites isn't a multiple of 3, put the sequence away | |
259 if not valid: | |
260 tag['no_multiple'].append(seq_id) | |
261 prot_seq = translate(cut_seq) | |
262 all_seq_fasta[seq_id] = {} | |
263 all_seq_fasta[seq_id]['prot'] = prot_seq | |
264 else: | |
265 # Translate nucleic sequence into amino acid sequence | |
266 prot_seq = translate(cut_seq) | |
267 all_seq_fasta[seq_id] = {} | |
268 all_seq_fasta[seq_id]['prot'] = prot_seq | |
269 | |
270 # Looking for stop codon in the sequence and getting their position in the sequence | |
271 if '*' in prot_seq: | |
272 pos_stop = [m.start() for m in re.finditer(r"\*", prot_seq)] | |
273 stop = False | |
274 # Checking if stop codon is between the restriction sites, also checking if it is an amber codon. if stop codon other than amber codon -> tag stop | |
275 for i in range(len(pos_stop)): | |
276 if pos_stop[i] < length / 3: | |
277 stop_codon_nuc = cut_seq[pos_stop[i] * 3:pos_stop[i] * 3 + 3] | |
278 if stop_codon_nuc != "TAG": | |
279 tag['stop'].append(seq_id) | |
280 stop = True | |
281 break | |
282 else: | |
283 if seq_id not in tag['amber']: | |
284 tag['amber'].append(seq_id) | |
285 # If stop codon wasn't found between the restriction sites | |
286 if not stop: | |
287 """ | |
288 # Checking if there is a stop codon outside the restriction sites. If yes -> tag ok_stop_ext | |
289 for i in range(len(pos_stop)): | |
290 if (pos_stop[i] > length/3): | |
291 stop_codon_nuc = cut_seq[pos_stop[i]*3:pos_stop[i]*3+3] | |
292 if stop_codon_nuc != "TAG": | |
293 tag['ok_stop_ext'].append(seq_id) | |
294 stop = True | |
295 break | |
296 else: | |
297 if (seq_id not in tag['amber']): | |
298 tag['amber'].append(seq_id) | |
299 """ | |
300 # Checking if there was a mutation in the fix part, if yes -> tag mut else retrieve variable parts | |
301 mut = False | |
302 pattern_part = args.pattern.split(":") | |
303 tmp_prot_seq = prot_seq | |
304 var_parts = [] | |
305 for i in range(len(pattern_part) - 1): # not checking the latest fix part | |
306 part = pattern_part[i] | |
307 # If part is fix | |
308 if not part[0].isdigit(): | |
309 # If part not in prot_seq -> mutation, flag then break | |
310 if part not in tmp_prot_seq: | |
311 mut = True | |
312 tag['mut'].append(seq_id) | |
313 break | |
314 # Else, store the variable part if exist then remove the fix part + variable part (tmp_prot_seq starts at the end of part) | |
315 else: | |
316 pos_fix = tmp_prot_seq.index(part) | |
317 if pos_fix != 0: | |
318 var_parts.append(tmp_prot_seq[0:pos_fix]) | |
319 tmp_prot_seq = tmp_prot_seq[pos_fix + len(part):] | |
320 # Else part is variable | |
321 else: | |
322 nb_var_part += 1 | |
323 # Treating latest fix part if no mutation before | |
324 if not mut: | |
325 last_part = pattern_part[-1] | |
326 last_var = pattern_part[-2] | |
327 if '-' in last_var: | |
328 var_max = int(last_var.split('-')[1]) | |
329 else: | |
330 var_max = int(last_var) | |
331 last_part = last_part[0:var_max + 1] | |
332 if last_part not in tmp_prot_seq: | |
333 mut = True | |
334 tag['mut'].append(seq_id) | |
335 else: | |
336 pos_fix = tmp_prot_seq.index(last_part) | |
337 if pos_fix != 0: | |
338 var_parts.append(tmp_prot_seq[0:pos_fix]) | |
339 # If no mutation the sequence is validated and all the info are stored | |
340 if not mut: | |
341 good_seq[seq_id] = {} | |
342 good_seq[seq_id]['dna'] = cut_seq | |
343 good_seq[seq_id]['prot'] = prot_seq | |
344 good_seq[seq_id]['var'] = var_parts | |
345 | |
346 # If all sequences are invalid, the program will exit as there is no data to continue | |
347 if not good_seq: | |
348 sys.exit("There is only one valid sequence among the input data. At least 2 valid sequences are necessary to proceed to the next step. The program will now exit") | |
349 elif len(good_seq.keys()) == 1: | |
350 | |
351 sys.exit("There is only one valid sequence among the input data. At least 2 valid sequences are necessary to proceed to the next step. The program will now exit") | |
352 | |
353 # Initialization of dict var_seq_common | |
354 for n in range(nb_var_part): | |
355 var_seq_common[str(n + 1)] = {} | |
356 | |
357 # Opening the file where the mcl input will be written | |
358 with open(mcl_file, 'w+') as mcl: | |
359 seq_keys = good_seq.keys() | |
360 for i in range(len(seq_keys)): | |
361 var_1 = good_seq[list(seq_keys)[i]]['var'] | |
362 | |
363 # Classifying variable sequences | |
364 for k in range(len(var_1)): | |
365 try: | |
366 var_seq_common[str(k + 1)][var_1[k]] += 1 | |
367 except KeyError: | |
368 var_seq_common[str(k + 1)][var_1[k]] = 1 | |
369 | |
370 for j in range(i + 1, len(seq_keys)): | |
371 var_2 = good_seq[list(seq_keys)[j]]['var'] | |
372 score = 0.0 | |
373 # Comparing the sequences' variable parts to find identical clones | |
374 if var_1 == var_2: | |
375 try: | |
376 clone_seq = "".join(var_1) | |
377 identical_clones[clone_seq].extend([seq_keys[i], seq_keys[j]]) | |
378 except KeyError: | |
379 identical_clones[clone_seq] = [seq_keys[i], seq_keys[j]] | |
380 # Align the 2 sequences using NWalign_PAM30 => replace by pairwise2 | |
381 seq_1 = ''.join(var_1) | |
382 seq_2 = ''.join(var_2) | |
383 matrix = MatrixInfo.pam30 | |
384 if len(seq_2) > len(seq_1): | |
385 score = get_identity(pairwise2.align.globalds(seq_1, seq_2, matrix, -11, -1)[0][0], pairwise2.align.globalds(seq_1, seq_2, matrix, -11, -1)[0][1]) * 100 | |
386 else: | |
387 score = get_identity(pairwise2.align.globalds(seq_2, seq_1, matrix, -11, -1)[0][0], pairwise2.align.globalds(seq_2, seq_1, matrix, -11, -1)[0][1]) * 100 | |
388 align_scores.append(score) | |
389 mcl.write('%s\t%s\t%0.2f\n' % (list(seq_keys)[i], list(seq_keys)[j], score)) | |
390 | |
391 # Clusters formation | |
392 subprocess.call(["mcl", mcl_file, "--abc", "-I", "6.0", "-o", mcl_output], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
393 | |
394 # Producing distribution graph | |
395 plot.hist(align_scores, bins=numpy.arange(0, 101, 2)) | |
396 plot.xlabel('Pairwise Alignment Score') | |
397 plot.ylabel('Number of occurrences') | |
398 plot.title('Distribution of the pairwise alignment score') | |
399 plot.grid(True) | |
400 plot.savefig(graph_pic) | |
401 | |
402 # Generating html report | |
403 report_html(html_file, tag, all_seq, good_seq, all_seq_fasta, identical_clones, nb_var_part, var_seq_common, align_scores, args) | |
404 | |
405 # Removing intermediate files | |
406 subprocess.call(["rm", mcl_file, mcl_output], shell=False) | |
407 print("HTML report has been generated in the output directory. The program will now exit.") |