Mercurial > repos > jasonxu > matrixeqtl
diff MatrixEQTL/demo/d.ANOVA5.r @ 3:ae74f8fb3aef draft
Uploaded
author | jasonxu |
---|---|
date | Fri, 12 Mar 2021 08:20:57 +0000 |
parents | cd4c8e4a4b5b |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MatrixEQTL/demo/d.ANOVA5.r Fri Mar 12 08:20:57 2021 +0000 @@ -0,0 +1,56 @@ +library("MatrixEQTL"); + +anova.groups = 5; +options(MatrixEQTL.ANOVA.categories = anova.groups); + +# Number of columns (samples) +n = 100; +# Number of covariates +nc = 10; +# Generate the standard deviation of the noise +noise.std = 0.1 + rnorm(n)^2; +# Generate the covariates +cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc); + +# Generate the vectors with single genotype and expression variables +snps.mat = floor(runif(n, min = 0, max = anova.groups)); +gene.mat = 1 + (snps.mat==1) + cvrt.mat %*% rnorm(nc) + rnorm(n) * noise.std; + +# Create 3 SlicedData objects for the analysis +snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) ); +gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) ); +cvrt1 = SlicedData$new( t(cvrt.mat) ); + +# Produce no output files +filename = NULL; # tempfile() + +# Call the main analysis function +me = Matrix_eQTL_main( + snps = snps1, + gene = gene1, + cvrt = cvrt1, + output_file_name = filename, + pvOutputThreshold = 1, + useModel = modelANOVA, + errorCovariance = diag(noise.std^2), + verbose = TRUE, + pvalue.hist = FALSE ); + +# Pull Matrix eQTL results - t-statistic and p-value + +fstat = me$all$eqtls$statistic; +pvalue = me$all$eqtls$pvalue; +rez = c( Fstat = fstat, pvalue = pvalue); +# And compare to those from ANOVA in R +{ + cat("\n\n Matrix eQTL: \n"); + print(rez); + cat("\n R anova(lm()) output: \n"); + lmdl = lm( gene.mat ~ cvrt.mat + factor(snps.mat), + weights = 1/noise.std^2 ); + lmout = anova(lmdl)[2, c("F value","Pr(>F)")]; + print( lmout ); +} + +# Results from Matrix eQTL and "lm" must agree +stopifnot(all.equal(lmout, rez, check.attributes=FALSE));