7
|
1 # A translation of aggregate.pl into python! For analysis of Tn-Seq.
|
|
2 # This script requires BioPython just like calc_fitness.py, so you need it installed along with its dependencies if you want to run these scripts on your own.
|
|
3 # How to install BioPython and a list of its dependencies can be found here: http://biopython.org/DIST/docs/install/Installation.html
|
|
4 # K. McCoy
|
|
5
|
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
|
14 ##### ARGUMENTS #####
|
|
15
|
|
16 def print_usage():
|
|
17 print "Aggregate.py's usage is as follows:" + "\n\n"
|
|
18 print "\033[1m" + "Required" + "\033[0m" + "\n"
|
|
19 print "-o" + "\t\t" + "Output file for aggregated data." + "\n"
|
|
20 print "\n"
|
|
21 print "\033[1m" + "Optional" + "\033[0m" + "\n"
|
|
22 print "-c" + "\t\t" + "Check for missing genes in the data set - provide a reference genome in genbank format. Missing genes will be sent to stdout." + "\n"
|
|
23 print "-m" + "\t\t" + "Place a mark in an extra column for this set of genes. Provide a file with a list of genes seperated by newlines." + "\n"
|
|
24 print "-x" + "\t\t" + "Cutoff: Don't include fitness scores with average counts (c1+c2)/2 < x (default: 0)" + "\n"
|
|
25 print "-b" + "\t\t" + "Blanks: Exclude -b % of blank fitness scores (scores where c2 = 0) (default: 0 = 0%)" + "\n"
|
|
26 print "-f" + "\t\t" + "An in-between file carrying information on the blank count found from calc_fitness or consol_fitness; one of two ways to pass a blank count to this script" + "\n"
|
|
27 print "-w" + "\t\t" + "Use weighted algorithm to calculate averages, variance, sd, se" + "\n"
|
|
28 print "-l" + "\t\t" + "Weight ceiling: maximum value to use as a weight (default: 999,999)" + "\n"
|
|
29 print "\n"
|
|
30 print "All remainder arguements will be treated as fitness files (those files created by calc_fitness.py)" + "\n"
|
|
31 print "\n"
|
|
32
|
|
33 import argparse
|
|
34 parser = argparse.ArgumentParser()
|
|
35 parser.add_argument("-o", action="store", dest="summary")
|
|
36 parser.add_argument("-c", action="store", dest="find_missing")
|
|
37 parser.add_argument("-m", action="store", dest="marked")
|
|
38 parser.add_argument("-x", action="store", dest="cutoff")
|
|
39 parser.add_argument("-b", action="store", dest="blank_pc")
|
|
40 parser.add_argument("-f", action="store", dest="blank_file")
|
|
41 parser.add_argument("-w", action="store", dest="weighted")
|
|
42 parser.add_argument("-l", action="store", dest="weight_ceiling")
|
|
43 parser.add_argument("fitnessfiles", nargs=argparse.REMAINDER)
|
|
44
|
|
45 arguments = parser.parse_args()
|
|
46
|
|
47 if not arguments.summary:
|
|
48 print "\n" + "You are missing a value for the -o flag. "
|
|
49 print_usage()
|
|
50 quit()
|
|
51
|
|
52 if not arguments.fitnessfiles:
|
|
53 print "\n" + "You are missing fitness file(s); these should be entered immediately after all the flags. "
|
|
54 print_usage()
|
|
55 quit()
|
|
56
|
|
57 # 999,999 is a trivial placeholder number
|
|
58
|
|
59 if (not arguments.weight_ceiling):
|
|
60 arguments.max_weight = 999999
|
|
61
|
|
62 # Cutoff exists to discard positions with a low number of counted transcripts, because their fitness may not be as accurate - for the same reasoning that studies with low sample sizes can be innacurate.
|
|
63
|
|
64 if (not arguments.cutoff):
|
|
65 arguments.cutoff = 0
|
|
66
|
|
67 # Gets information from the txt output file of calc_fit / consol, if inputted
|
|
68
|
|
69 if arguments.blank_file:
|
|
70 with open(arguments.blank_file) as file:
|
|
71 blank_pc = file.read().splitlines()
|
|
72 arguments.blank_pc = float(blank_pc[0].split()[1])
|
|
73
|
|
74 if (not arguments.blank_pc):
|
|
75 arguments.blank_pc = 0
|
|
76
|
|
77
|
|
78
|
|
79
|
|
80
|
|
81 ##### SUBROUTINES #####
|
|
82
|
|
83 # A subroutine that calculates the average, variance, standard deviation (sd), and standard error (se) of a group of scores; for use when aggregating scores by gene later on
|
|
84
|
|
85 import math
|
|
86 def average(scores):
|
|
87 sum = 0
|
|
88 num = 0
|
|
89 for i in scores:
|
|
90 sum += i
|
|
91 num += 1
|
|
92 average = sum/num
|
|
93 xminusxbars = 0
|
|
94 for i in scores:
|
|
95 xminusxbars += (i - average)**2
|
|
96 variance = xminusxbars/(num-1)
|
|
97 sd = math.sqrt(variance)
|
|
98 se = sd / math.sqrt(num)
|
|
99 return (average, variance, sd, se)
|
|
100
|
|
101 # A subroutine that calculates the weighted average, variance, standard deviation (sd), and standard error (se) of a group of scores; the weights come from the number of reads each insertion location has
|
|
102 # For use when aggregating scores by gene later on, if the weighted argument is called
|
|
103
|
|
104 def weighted_average(scores,weights):
|
|
105 sum = 0
|
|
106 weighted_average = 0
|
|
107 weighted_variance = 0
|
|
108 top = 0
|
|
109 bottom = 0
|
|
110 i = 0
|
|
111 while i < len(weights):
|
|
112 if not scores[i]:
|
|
113 scores[i] = 0.0
|
|
114 top += float(weights[i])*float(scores[i])
|
|
115 bottom += float(weights[i])
|
|
116 i += 1
|
|
117 if bottom == 0:
|
|
118 return 0
|
|
119 weighted_average = top/bottom
|
|
120 top = 0
|
|
121 bottom = 0
|
|
122 i = 0
|
|
123 while i < len(weights):
|
|
124 top += float(weights[i]) * (float(scores[i]) - weighted_average)**2
|
|
125 bottom += float(weights[i])
|
|
126 i += 1
|
|
127 weighted_variance = top/bottom
|
|
128 weighted_stdev = math.sqrt(weighted_variance)
|
|
129 weighted_stder = weighted_stdev/math.sqrt(len(scores))
|
|
130 return (weighted_average, weighted_variance, weighted_stdev, weighted_stder)
|
|
131
|
|
132
|
|
133
|
|
134
|
|
135
|
|
136
|
|
137
|
|
138
|
|
139
|
|
140
|
|
141 ##### AGGREGATION / CALCULATIONS #####
|
|
142
|
|
143 #Reads the genes which should be marked in the final aggregate file into an array
|
|
144
|
|
145 import os.path
|
|
146 if arguments.marked:
|
|
147 with open(arguments.marked) as file:
|
|
148 marked_set = file.read().splitlines()
|
|
149
|
|
150 #Creates a dictionary of dictionaries to contain a summary of all genes and their fitness values
|
|
151 #The fitness values and weights match up, so that the weight of gene_summary[locus]["w"][2] would be gene_summary[locus]["s"][2]
|
|
152
|
|
153 import csv
|
|
154 gene_summary = {}
|
|
155 for eachfile in arguments.fitnessfiles:
|
|
156 with open(eachfile) as csvfile:
|
|
157 lines = csv.reader(csvfile)
|
|
158 for line in lines:
|
|
159 locus = line[9]
|
|
160 w = line[12]
|
|
161 if w == 'nW':
|
|
162 continue
|
|
163 if not w:
|
|
164 w == 0
|
|
165 c1 = float(line[2])
|
|
166 c2 = float(line[3])
|
|
167 avg = (c1+c2)/2
|
|
168 if avg < float(arguments.cutoff):
|
|
169 continue
|
|
170 if avg > float(arguments.weight_ceiling):
|
|
171 avg = arguments.weight_ceiling
|
|
172 if locus not in gene_summary:
|
|
173 gene_summary[locus] = {"w" : [], "s": []}
|
|
174 gene_summary[locus]["w"].append(w)
|
|
175 gene_summary[locus]["s"].append(avg)
|
|
176
|
|
177 #If finding any missing gene loci is requested in the arguments, starts out by loading all the known features from a genbank file
|
|
178
|
|
179 from Bio import SeqIO
|
|
180 if (arguments.find_missing):
|
|
181 output = [["locus","mean","var","sd","se","gene","Total","Blank","Not Blank","Blank Removed","M\n"]]
|
|
182 handle = open(arguments.find_missing, "rU")
|
|
183 for record in SeqIO.parse(handle, "genbank"):
|
|
184 refname = record.id
|
|
185 features = record.features
|
|
186 handle.close()
|
|
187
|
|
188 #Goes through the features to find which are genes
|
|
189
|
|
190 for feature in features:
|
|
191 gene = ""
|
|
192 if feature.type == "gene":
|
|
193 locus = "".join(feature.qualifiers["locus_tag"])
|
|
194 if "gene" in feature.qualifiers:
|
|
195 gene = "".join(feature.qualifiers["gene"])
|
|
196 else:
|
|
197 continue
|
|
198
|
|
199 #Goes through the fitness scores of insertions within each gene, and removes whatever % of blank fitness scores were requested along with their corresponding weights
|
|
200
|
|
201 sum = 0
|
|
202 num = 0
|
|
203 avgsum = 0
|
|
204 blank_ws = 0
|
|
205 i = 0
|
|
206 if locus in gene_summary.keys():
|
|
207 for w in gene_summary[locus]["w"]:
|
|
208 if float(w) == 0:
|
|
209 blank_ws += 1
|
|
210 else:
|
|
211 sum += float(w)
|
|
212 num += 1
|
|
213 count = num + blank_ws
|
|
214 removed = 0
|
|
215 to_remove = int(float(arguments.blank_pc)*count)
|
|
216 if blank_ws > 0:
|
|
217 i = 0
|
|
218 while i < len(gene_summary[locus]["w"]):
|
|
219 w = gene_summary[locus]["w"][i]
|
|
220 if removed == to_remove:
|
|
221 break
|
|
222 if float(w) == 0:
|
|
223 del gene_summary[locus]["w"][i]
|
|
224 del gene_summary[locus]["s"][i]
|
|
225 removed += 1
|
|
226 i -= 1
|
|
227 i += 1
|
|
228
|
|
229 #If all the fitness values within a gene are empty, sets mean/var to 0.10 and Xs out sd/se; marks the gene if that's requested
|
|
230
|
|
231 if num == 0:
|
|
232 if (arguments.marked and locus in marked_set):
|
|
233 output.append([locus, "0.10", "0.10", "X", "X", gene, count, blank_ws, num, removed, "M", "\n"])
|
|
234 else:
|
|
235 output.append([locus, "0.10", "0.10", "X", "X", gene, count, blank_ws, num, removed, "\n"])
|
|
236
|
|
237 #Otherwise calls average() or weighted_average() to find the aggregate w / count / standard deviation / standard error of the insertions within each gene; marks the gene if that's requested
|
|
238
|
|
239 else:
|
|
240 if not arguments.weighted:
|
|
241 (average, variance, stdev, stderr) = average(gene_summary[locus]["w"])
|
|
242 else:
|
|
243 (average, variance, stdev, stderr) = weighted_average(gene_summary[locus]["w"],gene_summary[locus]["s"])
|
|
244 if (arguments.marked and locus in marked_set):
|
|
245 output.append([locus, average, variance, stdev, stderr, gene, count, blank_ws, num, removed, "M", "\n"])
|
|
246 else:
|
|
247 output.append([locus, average, variance, stdev, stderr, gene, count, blank_ws, num, removed, "\n"])
|
|
248
|
|
249 #If a gene doesn't have any insertions, sets mean/var to 0.10 and Xs out sd/se, plus leaves count through removed blank because there were no reads.
|
|
250
|
|
251 else:
|
|
252 if (arguments.marked and locus in marked_set):
|
|
253 output.append([locus, "0.10", "0.10", "X", "X", gene, "", "", "", "", "M", "\n"])
|
|
254 else:
|
|
255 output.append([locus, "0.10", "0.10", "X", "X", gene, "", "", "", "", "\n"])
|
|
256
|
|
257 #Writes the aggregated fitness file
|
|
258
|
|
259 with open(arguments.summary, "wb") as csvfile:
|
|
260 writer = csv.writer(csvfile)
|
|
261 writer.writerows(output)
|
|
262
|
|
263 #If finding missing genes is not requested, just finds the aggregate w / count / standard deviation / standard error of the insertions within each gene, and writes them to a file, plus marks the genes requested
|
|
264 #This is never called through Galaxy since finding missing genes is just better than not finding them.
|
|
265
|
|
266 else:
|
|
267 output = [["Locus","W","Count","SD","SE","M\n"]]
|
|
268 for gene in gene_summary.keys():
|
|
269 sum = 0
|
|
270 num = 0
|
|
271 average = 0
|
|
272 if "w" not in gene_summary[gene]:
|
|
273 continue
|
|
274 for i in gene_summary[gene]["w"]:
|
|
275 sum += i
|
|
276 num += 1
|
|
277 average = sum/num
|
|
278 xminusxbars = 0
|
|
279 for i in w:
|
|
280 xminusxbars += (i-average)**2
|
|
281 if num > 1:
|
|
282 sd = math.sqrt(xminusxbars/(num-1))
|
|
283 se = sd / math.sqrt(num)
|
|
284 if (arguments.marked and locus in marked_set):
|
|
285 output.append([gene, average, num, sd, se, "M", "\n"])
|
|
286 else:
|
|
287 output.append([gene, average, num, sd, se, "\n"])
|
|
288 with open(arguments.summary, "wb") as csvfile:
|
|
289 writer = csv.writer(csvfile)
|
|
290 writer.writerows(output)
|
|
291
|
|
292
|
|
293
|
|
294
|
|
295
|
|
296
|
|
297
|
|
298
|
|
299
|
|
300
|
|
301
|
|
302
|
|
303
|
|
304
|
|
305
|
|
306
|
|
307
|
|
308
|
|
309
|
|
310
|
|
311
|
|
312
|
|
313
|
|
314
|
|
315
|
|
316
|
|
317
|
|
318
|
|
319
|
|
320
|
|
321
|
|
322
|
|
323
|
|
324
|
|
325
|
|
326
|
|
327
|
|
328
|
|
329
|
|
330
|
|
331
|
|
332
|
|
333
|
|
334
|
|
335
|
|
336
|
|
337
|
|
338
|
|
339
|
|
340
|
|
341
|
|
342
|
|
343
|
|
344
|
|
345
|
|
346
|
|
347
|
|
348
|
|
349
|
|
350
|
|
351
|
|
352
|
|
353
|
|
354
|
|
355
|
|
356
|
|
357
|
|
358
|
|
359
|
|
360
|
|
361
|
|
362
|
|
363
|
|
364
|
|
365
|
|
366
|
|
367
|
|
368
|
|
369
|
|
370
|
|
371
|
|
372
|
|
373
|
|
374
|
|
375
|
|
376
|
|
377
|
|
378
|
|
379
|
|
380
|
|
381
|
|
382
|
|
383
|
|
384
|
|
385
|
|
386 #
|
|
387 # ~MMM=:DMMM?, +NMMO=,:~I8MMMMM8+, , ~I8MMMMMN87~?8NNMMN8: +NMND~ +MN= ,$MMMI ?M8, ,OM8, :MN+ =MM? ,MMDNMMD ,+DM8I, ,,:::~~~::::::::::
|
|
388 # IMMMNMM8I ,I8MM87~::+$8NNMMMMOI+=~~:, ,,:~=?$DNMMMMMMDOZI7ZDMMMD8I , , $M8+?8MM8I , 7MI +MN= ZMN, 8MD MMN8MMM, :$ONM8I+=:, ,,,::::~~~~~=====~:
|
|
389 # , ,DMNN7: , ,OMMN7==~::~=?8NNMMMMMMNNMMMMMMMMMMMN8OO8ODNMMMMMD~ , IMMNMN~ ,OM+ ,NM$ ,NMO, :MM$ , ,:::,,::::,, $MNMMNM, ,,, :?ONMMNN8?~,, , ,,,,,,,::~~=+++??=~
|
|
390 # ,,:=+????+, I$ :ZMMN8$~:,,, ,:=?7$O8DD8O$7+==+$O8DNMMMMMMMMM$ ?$, == ,~, ~NM= 8MD, ,OM8ZMMO , ,::::::~~~:,, ?MNMMZ ,,,,,, ,+7ONMNMD8O$+~, ,,,,,,::~====::
|
|
391 # ,:=IONMMMMMMMMMMM8: ZN$: ,~DMMMND7=, ,,:~====:=$DNMMMMMMMN88MMMZ +N$ , ,7DN8= =MN, IMM =DMN7 ,,,,,,,,,, ,~?, ,,,,, , ~?$8MMMMNN8Z?~:,, ,:::,,,
|
|
392 #+ONMMMMMMNO7=:,, ,,+MMO, 7D$: ~OMNMNNMNNNNNNNNNNNMMMMMMMMMNMMMM?,~MMM8 ND, 7MM=, ?NN:, +MO, ?MM, ,,,, , :,:=$DMMMMMMN87=~, ,,,,,
|
|
393 #MMND8$: , 7NM7 , =?~,,, :?88DDDNNMNNNDNDD88Z?:, ZMM$ ,MMMO ,MM+ZNMM? ::ZNZ, +M$ ,MM?, , ,, ,,:=?Z8NMMMMMN8Z+=,
|
|
394 #: ~ZMM8~ ,,,, 8MM, +MMM, 7ZZI~=$OOZ$: ,:+???+, +MZ =MN= ,,, , ,,:~=?IIII$ZO88DDNNNNNNMMMMMMMMMMN~,
|
|
395 # ,:OMMM? ,,:,, 8MM ~NNM7 :OMMMMMMMMO: =M8, :NM~ = ,~?I, ,,,,,,,,,,,,,, ,~$DNMMMMMMMMMND8O888Z$II7777I??+++===:,
|
|
396 # ?DMM8?, OMN??NMM$ ~8MMMO?===7MMM8: ~NM= =NN: ,OM~ ,, +NMMN~ ,,,,, ,,,,,,,, ,?$O8NNMDDZ7?+=~:, , , ,
|
|
397 # , ~$MMMD+ , , ~MMNMMN~ : +NMMZ, NMNM~ 7MI , ZNN,, IMN, :DMNM+ ~+NMMMD~, ,,,,,,,, ,, ,,,,,:, +OMNMMOI~,
|
|
398 # , $MMMM$, , ,=?ODNMNNMNMMMMNNND~ ,$D$, , ,8MM8 ,MMM7 ,ZMNNMM= DMMNMMMMMMMMMMMMNI: , ,,,,,,,,, ,,, ?NMO=, ,
|
|
399 # ,~ZNMND7, ,,:~=+$DNNMMMMNDDDD888OZZZZ8NMMN IMMN: ,MMN~ +Z$+, ?NNNDO+:?O888OI, ,,,,,,, ,,, +MN+
|
|
400 # =ONMMM8~ , ,:=IDMMMMMMMND8$+:, , ,INMNZ :MMM~, , +MMD , ,, ,,::,,,, ,,:::, ?M8: ,
|
|
401 #8MMMNZ~ , =I$ONMMNDZ7?+, ,,=I8NMD7: DMMN DMN= ,:::, ,:~~=~~:,, :ZMMZI+: ,, ,,,,,,,
|
|
402 #MN7:,:=7ONMMMD$?=, , ~7ODNMM$+: ~MMM++7ZOZOO8O8D8$~ ,MM8 ,,,,::~~==~~:,, :+7DMMMMNNDD88OOZZZO88DNNNN8=, ,,,,,,,
|
|
403 #I,~+DMMNND7: , ,$MMMMMN7, $MMN :??+=~::,,,, NMD, ,:,,:::~=~~,,,, ,,=I$8DNMMMMMMMMMNMMMNZ: ,,,,,,
|
|
404 #DNMNN7:, ,+ONMMMMNI: NMM$ DMN= ,,,,:::::~~::,, ?DMMMMDZ=, ,,,
|
|
405 #N8$: ,,, ,:=?ONMMMD8Z+, ,,,, MMM= ZMMI ,=?$8NMMMMMMMMMMMN87=~~,,, :=ZMMMMD$~
|
|
406 # , ,=ZNMMMMMNI:, ,~?Z88888$=, ,:~+??~, MMM, IMM$ ,=ZNMMMMMN8$+~=~=~~===7ODNMMMN8DNMMMN+, ,,
|
|
407 # , ~?$ODMMMMNZ?: :II+~, ,=7= :?77?=:====?O+ ,,:,,, MMM, ?MM$ ,,,, :?ONMM8II=, , =DMMMM87=, ,,,,
|
|
408 # , ,, ,~I8MMMMMMN87?~:=+?7$ZOO88DD888O$I+~:, ~ZZ: ,$7,~??, ,?+ ,+Z8$?==??= MMM =MM$ :?ODNNNNNNNMMO: ,:?NNMNO= ,,,IMMMNZ, ,,,:,,,,,,,,,,,,,
|
|
409 #, ,~7DNMMMMMMMMMMMNNNNMMMNND8Z7II7$$$$ZODNNNMND$, :O$: , ,IN$, I+ +ZZ=,, 7+ MMM =ODDDDNNNNNN8= :MM$ ?DDNN8?::,, ,,7NMM8, 7NMNZ~, :OMMM$, , ,,:::~~:,,,,,,,,,,,,,,,,,
|
|
410 #?8NMMMMMMMMMMMN8I:,,, ~$NMMM$ :87 +DM$ ID+~78I, O7 :=+~ MMM , , ?MM7 $NMN$, :I8MMMMMMNMDNNNNNNNNNDD88ZI=: ,ZMM7, +MMN~ ,,,:::,, ,,:,::::,,,,,,
|
|
411 #MMMD8DNMDZ7=: ,:=+7ZNNNDOZ~ =DI , :7MM7, IDDZI, =DN88ZI77$N? NMM: $MM= ~: =OMNZ+ ,=7DMMMMMMNDDOOOOZ$7IIIII77$ZOO8NNMMD$+~ :OND~, ,, MMN= ,,,,,,,,,,,,,
|
|
412 #: ,,, , ,:+ZNMNNMMNO?: +8? +NMN7 , , ON~ 8MM$ NMD, ,7MMMN, 7MMO, ,:ONMMMMN8I: ,~ZNMNN$, ~MM? , ZMNND?~: ,,, ,, ,,,,,,
|
|
413 # , , ,:~?7$ZZ8NNMMMNO7I=, ~D+ ZNO=, , :NM$: =MMM NMO ~NMNMMM :ZDN$, ,,=7DMD$?=, :?ZMD$: :DMNOZZZ$: ,,,,, ~IDMMMMMMMMMMMMMMMMMMMMM8~
|
|
414 # , =DMNNNNNNNN8$= : , ,,~?ODNZ: :DM? =: ,MMM7 +MN~ ,MM8:NMN INMZ, ,=ONOI , +NMZ ,,+ZDMMMMMMMN+, ,,,,,,, ,~?$ODNNNNNNNMMMMMMMMD= ,
|
|
415 # ,:::::~7$I?=: ,~78NMNMMMMM? :+Z+ M8 $MM, =, DMMD NMN DMO OMM77NMI, ?8$~ , ~ZDDDNNNNNMMMMMMMMNMNNNNNDD8Z+:, IMN: I8DNMMMMN7~: ,,,,,, +$O$, ~$DMMMMMMMD~ ,, ,
|
|
416 # :I+ :ID? ~ZDNNNNMMNO?~,, ,:::::=7ONMNNNDMMMN$ ,=IONNMMMMZ:, ~MO ,7MMMI $MN, , :MMN ?8NDDNND$~ +MM~ ,MM~=MMMNMD, =ONNDDNMMMMMMMMMMMMNNND88DNNNNNMMMMMMMNDO7+~::,:,7MM+ =DMMMNNO? ~ZMMMMM7::~INMMMMMMMMMMMMMN8:
|
|
417 #:MMM+,INMMM: ,:~+78NMMMM8?==++++++???++??I$Z77$$$$$$$7II??I$ZZO8MMMMM8Z7~ ,IZI ~77+ ?MMMMD88MN8+~, +8MO$OMMMMMNMMMZ, ~=: OMM? ,MM? ZMM~MMMM8~ ,:+7$$$$ZZ7?==: :8MDOZ$ZZZODMMMMMM8+, ,:=?$ZZOOOOOOZ$: , , ,=8MNMMMMMMMMMMNDZ$7$MMMMMMMMMMMMMMMMMMNI+?I7ZDNMMMMMMMMMM$,
|
|
418 #=MMMZ$MMMMMM~ ,::::~==~~+I$8NMMMMMN$::::::::,,, ,,=ONDDO$7II?+~, , ,,$DD87: =NND= , ,+$$=:~, ,:, ,MMD NMI ,~?Z8DND88$?: 8MM$MMMZ:=~:,~~:::,,,=$DNMND$MM8, ~DMNMMMN?, :7$7?+==~=:,,,,,,,, ,,,,,,, ,,,,,,::,,,,,:::::::,,,::::::,, ,OM$,7MMMMMMNZ= , ~8MMMMMMMNDO7I7MMMMMMMMMMMMN8Z7+?NMMMD,,
|
|
419 #NMMMMMM? ,++, ~=I??= :7$ 7MM+ 7M7 ,:?ZZ$MMM8NMZ~+, :?INMMM? +$NMMMNZ: :+?I7$$Z$O88D88DDDDNNNNNNNNNNNNNNNNNNDDNDDDNNNNNMMNMMMMMMMNNNN$:??~ ,+II?=, , ,, ,?I??+=~, :MMMMMNM
|
|
420 #MMMMMD~ ,:=++++++++++=~,,, +MMN: ,MMD, :M$ ,INMNMMMMMMMMMM~~~?D, :OMM8: ,+$8Z$+,,$MMMMMD, :IODDDD
|
|
421 #N$~,,, ,~I$8NMMMMMMMMMNMMMMMMMMMMMMMMMMNNNN7: ZMMMM? NMMMNZ~:, +$: ,NMNI:::~?8MMM7I? IO ~I$ODNNNDND8OO$I?DMMMD$I8NMMMMMMMNMNMMMMMMM8=, ,
|
|
422 # ,:~?ONMMMMNNNDDD8NMD+, ,~?Z8NMNM8=, , $MNNNMM? :DMMMNDD8DZ7$+, ,8NMMNMNMMMD$: =8, ,INMMMNZI?====+I$$8DDNMMMMMMNNNMND7, :~$DMMMNMO
|
|
423 # ,?DMMMMMNNNMMM+::~++ZMMMM8ZZZZZZ$II77II7???=~:, ,+DMN7 =NMM8, ,NMMNMNMN$?I7I77OZ~ ~8D$~, ,MMMMMMNM8: :DMMM, , DMO=ZMZ,
|
|
424 # ,?OMMN87=, IZNNNMMMMMMMMMMND7IIII??III$8DDNN8Z+, , ~MM ?OMMMM~ ,MMMMMZ+ ~I= IMMMO$$= ?NNM? MN~ +NM:
|
|
425 # IMM8~ =MD, ?N= :,, ,+77?=+, $8MM7::OMMMMMMZ+ I+, ?NI , :MMM8$ NNI, 7M$
|
|
426 # ,MMN $MD 7M+ ~ODNZ~, :7MMN? , $MMMN= 7MNMN: +8+ ,D8~ =MMDD8Z= =NMD OM7,
|
|
427 # OMMD~ IMN: =8O:,~+$OO? :IZ+: :ZMMNM8= =DMMI ~8MM8= , ,, :8M?,$MM, ::, DM, =Z~ ,I8DDDN8$DMN~ MN ,=Z8DNDZZ= MD: ,
|
|
428 # ,,,,,,,, ?8NNMM8$I????++=+8MMMD$77$ZDMMNMMMDNOZ~ :IZ8DOI~, =MMMNMNM8I:, ,7M8I +MND7 ~MNDDM8~ 7MI MM7 :8MDDM7 8N= ~ID$, ,:Z$?:,,,=ONNMNMD= ?M$ :: +MI ,,,,,,::~~:::,,,,,,, ,+OMO:, ,
|
|
429 # ,,,::~===~~:, ,~+I$88DNNNNNNNNNDNDD8O$?~:, ,7DNMNDMMMN~,ZMND$8NNDZ=, $M? ?NNN7 =MO OMD$MM= MMMINMO $M7 DN: 8MMD: ?D~ :O8ZDMMMMD=, ,ZN$ ,INNMD= :NO ,:+8MMMMMMMMDI:,::,,
|
|
430 #=~~~::~~::, ~?78MMMDNMM? :+I$DD87?=, OMNDO$7$OI: 7N+ ?MNMN~ MMMNM$ 7M$ 7M$ +NMMO, ?N~ ~8+ ~7NMMNNOI= ~?ONZ+ ~ZNND,$M8 ~MO $MMMMMMMMMM7:::~~~~~~=+++===~~~:::,,
|
|
431 # ,~ONMMNO~, :?8NNMN8?~ZNMMMMMMMMMNMMNDOI=~NM? =MMM+ NMMMO 8M$ ,MM, $MMMN =D, ,?N~ , ?NMMMNNNDDO8DDD887, ,$ND= :O$NMZ IMO ,IMMMMN$, 7NO, ,,,,,:,,,
|
|
432 # ,~IDMNN8OI, :~+$DMMMMMMMN87+=~~~~?ZDNNMM, ?NM? :NMN :MM7 ~MN ~DMMMN O~ :DD, ,MMMMNNOI:,, , ,=ZODD8D? :MMM: NMZ +8NM8, ,, :~ ,,~:,
|
|
433 # ,INNMMNNO+ :=78NNZIIONMNNDMMN ,7D~ :MN~ MNMM?=MM $? OD, ,IMD ,:8MNMNNNNNNNNMMNM7: :8~ ZND OMN7, :NNMMMMN :8MMMMMNZ=:
|
|
434 # :O88NMMN$=~:, ?MMN88NMMMD =MN? =, :NM +7$NO, =N8 , OMI, ,, 7M: ZDDND? MMO ,, +MM8?OMN: ,::
|
|
435 # :$NMMMNMM8I: ,8MD, +MMN= ,=?77=:ZMMM7 ?MN ~$+ 7M7 ,DZ :M~ IMM8: ,8MN, , ,,,, :MMD,=DMM+,?O8= , ,
|
|
436 # ,=I77$ONNNZ?+ONMZ =$D ,+=::+$8NNMNDNMD7?, ?MN :~~: ~D7 ,NI ,M7 ~?ZNZ?, 8MM~ =ZMMN~$MMMMMMMNMMD$ONMMMMD:
|
|
437 # ~DMM= ~I7=, =DMMMD7MMM, :+?=?O$: ~N: ~MN88D$: NMM=, ~MMMMMMMMMMMMOZMMMMMM7::8MMI
|
|
438 # , :DNNI :~IDMMND :::=?II?==~::ZN7=+I$ZZZ8DZ+~~: IMMM~ ~MMMNMMMMMI~:7NMMMMD7,: +NM8,
|
|
439 # :NMM7, ~MM+ ,,,:~==~~~: , OMMN: ?NNMMMMM8, ~NMNO, =MMMN?,,
|
|
440 # ,,,,,,,, ,$8MMO= ~M8 +MNO: ,MM~ , :: ,~, ,,:::,,,,
|
|
441 # ,::,,,, ~ONND+ OD+ ?NMD, ?? ,::::::,,
|
|
442 # :=+??=:,,,,, ~?$D87I: ~Z? =$DM$: ,::,,,,,,,,
|
|
443 # ,:~==~, :+=, $NNNNZ~ ,,:~~: , :DMMMI
|
|
444 # ,~~~~~:,,, ,,, ,~IMMMN8O+, ,:~?7$Z7~, :ZDMNNDNM8ZI
|
|
445 # ,,~~:,, , :$DNNMMN8?, , ,~7ZOO?: ,:$NMMMM? :7NMMD?,
|
|
446 # ,:~~:,,, $NMMMMMNMNO?~ ~?ODDD$=, :?8MMMMMD?~7NMMMD$~ :ONMMN?
|
|
447 # ,,,,,,,,, ?$DMMMMMMMMMMD$?=~, ,~7ZZODN87????I$ODNMDOZ$7I: ~$ZDMD7==~ =$ZDND$++~,
|
|
448 # ~?++=~~, ~+?II7ZNMMMMMM8$$$?~, ,~?II7Z8DDOZ$77II+: ~?IZDM8O$I~, :??$8MMNZZ7+,
|
|
449 # , , ,+D7 :=IZ8NMMMNNMNNO$= ,:?ZDNNMMMNMND8Z7=, =ZNMMMMMD?,, :ONMNMMMN?,
|
|
450 # ,MMMM7 ,,::~IONNMMNNDDD8OZI=, ,::::=+I$ONMNNNNDDDNNMMMMMMMMMD87: ,:~=ZNNNDOI, ~7$ZO8DDNNNNDD8O+:,
|
|
451 #~, +MMMMDI?~ ,~+Z8DNDNNMMMMDD$+:,,, , ,~?7O8DNNNNNNMMMMMNOOZI??++?IZ88$: ,,~ZDMMMMMMMMMMMMMMMMMMNNNNNMMMNND8$=,,
|
|
452 # ,~: NMMMMOZMM8: ,7DZ~ ,,~IONMMMMMMMMMNDZ+~: , ,=I8DNMMMMMNMNMMMMMDNMMMMNMMMNNNDDDDD8O8Z$7II+++IZDDMMNMN$,,
|
|
453 # :~: MMMMMNMMM+ :, +?DOI~ ,:~?7$$ZODDNMNN8Z7??+=~:, ,~=+?7I?=:,,,,:=?I7$$$$$$$ZZZOO8DDNNMMNNNNNMMMMNMZ+
|
|
454 # ~=, MMMMMMMM8 ,NNNO , ,~?ZDNMNNNNNNND8O7?:,,, ,~=7DMMMMMMMMMZ~
|
|
455 # ,:+~ ,MMMMMMMMO ~N8: ,,:~, ,:~:,,, ,:~, ,:~~=+++?7$O8DNNNNNMMN8$=, ~+$ZO8DNNMMNNNND8OOOZ$+:, :=+I8MMMMDOI
|
|
456 # ,=+ MMMMMMMMMDMZ, ~?: ,,,,, ,:~~~, ,NN?$NMMMMMMMMMMMN87~:,,,=+=:,,,,,,:?NMMNMMMMMMNNDNDI8MMM+ ,
|
|
457 # +=, $MMMN?$NMN, ,+?+:, ,,:~~:, :=~, 8M= , :7ONNNO?~, , :$NNMMMMMMMMMMMMMN,
|
|
458 # ,+? ,NNO,, , :ODNNNZ: :?777I= IMO ,,=$Z7+~ ,?NNMMNZ: :7NMMMMMNMMMM8 , ,IDND~
|
|
459 # ,=~, 7I :+I+~::,, ~?I~ , ,~=~==: ZMZ ?8I: :I$DND$?~ :?$8MMN$?: ?ZDMMMMMMMM7 +$NMMMMMI
|
|
460 # ~~ , ,=+=: ,== ::, , ZMM: ?NN8: ,7NMMNI, ,$NMMMO: =NMMMNMM+ I8NMMMM,
|
|
461 # ~= ,~:,,~~, ,:, ,,,, , ,, +MN8 ,~OMM8Z, :+ZMNDOI =IMMN8= ,=NNMO ?NMMMD
|
|
462 # ::, ,,,:: ,:, ,, =MMO~ , ?NMMMI, ,INMMMDI, ~DMMN+, NMO ?DNO~
|
|
463 # ,~, ,,,::, ,, , ,, ,INMND+: :MMM+ ~ZDDMMMD?~:$MMMMMMMMMMM?
|
|
464 # ,, :~~:, ,:, ,, :ZMMMMNNMMMN, ,=ONMMMMNM$,,,,,, ,,
|
|
465 #Z, :, ,, ,~=~, ,, ,=?7$I= , :~~~, ,,,,
|
|
466 #MD= :: ,,,, , ,, ,,,,
|
|
467 #MNMI :: ,,, ,,,,
|
|
468 #7MMM? , ,~: :~:, ,:,
|
|
469 # OMMMO: ~NMD, :=: :+=: ,,,
|
|
470 # ~MMMN8: NMMM~ +?: ,:=++~ ,:,,
|
|
471 # $MMMMMNI,?MMMMZ ,DM7 ,=I= ~+~~:, ,:,,,
|
|
472 # +MMO~OMMMMMMMMD MMM7 , , =$~ ?OZ+ ,:,
|
|
473 # ~NMN: :+DNN7MMMNMMMDODMMN+ :+?, +77+~: :::,
|
|
474 # IMM+ ,NMMMMMMMMN?NM7 ~7+, , :+$I, , +8? :+~
|
|
475 # =NMD, NMMMMMM8~ ?NN, =ND? ,=??: ,8NMMMM= :++
|
|
476 # +DO, ~ZZ$ODI :8M~ :=I8NMNMMD+, ,:~~=: , +8MO$DMD+ ~===~: :~~:
|
|
477 # :$~ 7NMD$, ZMM8I? ,~=: , ZNN7,:MM8~,OMNMD8DMM= ++:
|
|
478 # =ZNOI: ?DND= ,?I~ ,,,: ,$ND+ ?NMNNNNN7+, 7MN, ,=+~
|
|
479 # :ZI: :, ,=7: ::,, $NN= 7NMMMM7: :DMMMN8NMMDDMN7 ,::,
|
|
480 # ~?= ,,, ,ZM= DMMD8 ?MMMMNN7, ,I+ :~~,
|
|
481 # =+, ,,, ,, =Z8: +$~
|
|
482 # :~ ,,~~,
|
|
483 # :, ::,
|
|
484 # ::, ,:::,
|
|
485 # ,, ,~
|
|
486 # ,, ,,,
|
|
487 #
|
|
488 # |