Mercurial > repos > lsong10 > psiclass
comparison PsiCLASS-1.0.2/stats.cpp @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:903fc43d6227 |
---|---|
1 #include "stats.hpp" | |
2 | |
3 /** The digamma function in long double precision. | |
4 * @param x the real value of the argument | |
5 * @return the value of the digamma (psi) function at that point | |
6 * @author Richard J. Mathar | |
7 * @since 2005-11-24 | |
8 */ | |
9 long double digammal(long double x) | |
10 { | |
11 /* force into the interval 1..3 */ | |
12 if( x < 0.0L ) | |
13 return digammal(1.0L-x)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */ | |
14 else if( x < 1.0L ) | |
15 return digammal(1.0L+x)-1.0L/x ; | |
16 else if ( x == 1.0L) | |
17 return -M_GAMMAl ; | |
18 else if ( x == 2.0L) | |
19 return 1.0L-M_GAMMAl ; | |
20 else if ( x == 3.0L) | |
21 return 1.5L-M_GAMMAl ; | |
22 else if ( x > 3.0L) | |
23 /* duplication formula */ | |
24 return 0.5L*(digammal(x/2.0L)+digammal((x+1.0L)/2.0L))+M_LN2l ; | |
25 else | |
26 { | |
27 /* Just for your information, the following lines contain | |
28 * the Maple source code to re-generate the table that is | |
29 * eventually becoming the Kncoe[] array below | |
30 * interface(prettyprint=0) : | |
31 * Digits := 63 : | |
32 * r := 0 : | |
33 * | |
34 * for l from 1 to 60 do | |
35 * d := binomial(-1/2,l) : | |
36 * r := r+d*(-1)^l*(Zeta(2*l+1) -1) ; | |
37 * evalf(r) ; | |
38 * print(%,evalf(1+Psi(1)-r)) ; | |
39 *o d : | |
40 * | |
41 * for N from 1 to 28 do | |
42 * r := 0 : | |
43 * n := N-1 : | |
44 * | |
45 * for l from iquo(n+3,2) to 70 do | |
46 * d := 0 : | |
47 * for s from 0 to n+1 do | |
48 * d := d+(-1)^s*binomial(n+1,s)*binomial((s-1)/2,l) : | |
49 * od : | |
50 * if 2*l-n > 1 then | |
51 * r := r+d*(-1)^l*(Zeta(2*l-n) -1) : | |
52 * fi : | |
53 * od : | |
54 * print(evalf((-1)^n*2*r)) ; | |
55 *od : | |
56 *quit : | |
57 */ | |
58 static long double Kncoe[] = { .30459198558715155634315638246624251L, | |
59 .72037977439182833573548891941219706L, -.12454959243861367729528855995001087L, | |
60 .27769457331927827002810119567456810e-1L, -.67762371439822456447373550186163070e-2L, | |
61 .17238755142247705209823876688592170e-2L, -.44817699064252933515310345718960928e-3L, | |
62 .11793660000155572716272710617753373e-3L, -.31253894280980134452125172274246963e-4L, | |
63 .83173997012173283398932708991137488e-5L, -.22191427643780045431149221890172210e-5L, | |
64 .59302266729329346291029599913617915e-6L, -.15863051191470655433559920279603632e-6L, | |
65 .42459203983193603241777510648681429e-7L, -.11369129616951114238848106591780146e-7L, | |
66 .304502217295931698401459168423403510e-8L, -.81568455080753152802915013641723686e-9L, | |
67 .21852324749975455125936715817306383e-9L, -.58546491441689515680751900276454407e-10L, | |
68 .15686348450871204869813586459513648e-10L, -.42029496273143231373796179302482033e-11L, | |
69 .11261435719264907097227520956710754e-11L, -.30174353636860279765375177200637590e-12L, | |
70 .80850955256389526647406571868193768e-13L, -.21663779809421233144009565199997351e-13L, | |
71 .58047634271339391495076374966835526e-14L, -.15553767189204733561108869588173845e-14L, | |
72 .41676108598040807753707828039353330e-15L, -.11167065064221317094734023242188463e-15L } ; | |
73 | |
74 register long double Tn_1 = 1.0L ; /* T_{n-1}(x), started at n=1 */ | |
75 register long double Tn = x-2.0L ; /* T_{n}(x) , started at n=1 */ | |
76 register long double resul = Kncoe[0] + Kncoe[1]*Tn ; | |
77 | |
78 x -= 2.0L ; | |
79 int n ; | |
80 | |
81 for( n = 2 ; n < int( sizeof(Kncoe)/sizeof(long double) ) ; n++) | |
82 { | |
83 const long double Tn1 = 2.0L * x * Tn - Tn_1 ; /* Chebyshev recursion, Eq. 22.7.4 Abramowitz-Stegun */ | |
84 resul += Kncoe[n]*Tn1 ; | |
85 Tn_1 = Tn ; | |
86 Tn = Tn1 ; | |
87 } | |
88 return resul ; | |
89 } | |
90 } | |
91 | |
92 | |
93 | |
94 double trigamma ( double x, int *ifault ) | |
95 | |
96 //**************************************************************************** | |
97 // purpose: | |
98 // | |
99 // trigamma calculates trigamma(x) = d**2 log(gamma(x)) / dx**2 | |
100 // | |
101 // licensing: | |
102 // | |
103 // this code is distributed under the gnu lgpl license. | |
104 // | |
105 // modified: | |
106 // | |
107 // 19 january 2008 | |
108 // | |
109 // author: | |
110 // | |
111 // original fortran77 version by be schneider. | |
112 // c++ version by john burkardt. | |
113 // | |
114 // reference: | |
115 // | |
116 // be schneider, | |
117 // algorithm as 121: | |
118 // trigamma function, | |
119 // applied statistics, | |
120 // volume 27, number 1, pages 97-99, 1978. | |
121 // | |
122 // parameters: | |
123 // | |
124 // input, double x, the argument of the trigamma function. | |
125 // 0 < x. | |
126 // | |
127 // output, int *ifault, error flag. | |
128 // 0, no error. | |
129 // 1, x <= 0. | |
130 // | |
131 // output, double trigamma, the value of the trigamma function at x. | |
132 // | |
133 { | |
134 double a = 0.0001; | |
135 double b = 5.0; | |
136 double b2 = 0.1666666667; | |
137 double b4 = -0.03333333333; | |
138 double b6 = 0.02380952381; | |
139 double b8 = -0.03333333333; | |
140 double value; | |
141 double y; | |
142 double z; | |
143 // | |
144 // check the input. | |
145 // | |
146 if ( x <= 0.0 ) | |
147 { | |
148 *ifault = 1; | |
149 value = 0.0; | |
150 return value; | |
151 } | |
152 | |
153 *ifault = 0; | |
154 z = x; | |
155 // | |
156 // use small value approximation if x <= a. | |
157 // | |
158 if ( x <= a ) | |
159 { | |
160 value = 1.0 / x / x; | |
161 return value; | |
162 } | |
163 // | |
164 // increase argument to ( x + i ) >= b. | |
165 // | |
166 value = 0.0; | |
167 | |
168 while ( z < b ) | |
169 { | |
170 value = value + 1.0 / z / z; | |
171 z = z + 1.0; | |
172 } | |
173 // | |
174 // apply asymptotic formula if argument is b or greater. | |
175 // | |
176 y = 1.0 / z / z; | |
177 | |
178 value = value + 0.5 * | |
179 y + ( 1.0 + y * ( b2+ y * ( b4 + y * ( b6+ y * b8 )))) / z; | |
180 | |
181 return value; | |
182 } | |
183 | |
184 | |
185 double LogGammaDensity( double x, double k, double theta ) | |
186 { | |
187 return -k * log( theta ) + ( k - 1 ) * log( x ) - x / theta - lgamma( k ) ; | |
188 } | |
189 | |
190 double MixtureGammaAssignment( double x, double pi, double* k, double *theta ) | |
191 { | |
192 if ( pi == 1 ) | |
193 return 1 ; | |
194 else if ( pi == 0 ) | |
195 return 0 ; | |
196 | |
197 double lf0 = LogGammaDensity( x, k[0], theta[0] ) ; | |
198 double lf1 = LogGammaDensity( x, k[1], theta[1] ) ; | |
199 return (double)1.0 / ( 1.0 + exp( lf1 + log( 1 - pi ) - lf0 - log( pi ) ) ) ; | |
200 } | |
201 | |
202 //****************************************************************************80 | |
203 | |
204 double alnorm ( double x, bool upper ) | |
205 | |
206 //****************************************************************************80 | |
207 // | |
208 // Purpose: | |
209 // | |
210 // ALNORM computes the cumulative density of the standard normal distribution. | |
211 // | |
212 // Licensing: | |
213 // | |
214 // This code is distributed under the GNU LGPL license. | |
215 // | |
216 // Modified: | |
217 // | |
218 // 17 January 2008 | |
219 // | |
220 // Author: | |
221 // | |
222 // Original FORTRAN77 version by David Hill. | |
223 // C++ version by John Burkardt. | |
224 // | |
225 // Reference: | |
226 // | |
227 // David Hill, | |
228 // Algorithm AS 66: | |
229 // The Normal Integral, | |
230 // Applied Statistics, | |
231 // Volume 22, Number 3, 1973, pages 424-427. | |
232 // | |
233 // Parameters: | |
234 // | |
235 // Input, double X, is one endpoint of the semi-infinite interval | |
236 // over which the integration takes place. | |
237 // | |
238 // Input, bool UPPER, determines whether the upper or lower | |
239 // interval is to be integrated: | |
240 // .TRUE. => integrate from X to + Infinity; | |
241 // .FALSE. => integrate from - Infinity to X. | |
242 // | |
243 // Output, double ALNORM, the integral of the standard normal | |
244 // distribution over the desired interval. | |
245 // | |
246 { | |
247 double a1 = 5.75885480458; | |
248 double a2 = 2.62433121679; | |
249 double a3 = 5.92885724438; | |
250 double b1 = -29.8213557807; | |
251 double b2 = 48.6959930692; | |
252 double c1 = -0.000000038052; | |
253 double c2 = 0.000398064794; | |
254 double c3 = -0.151679116635; | |
255 double c4 = 4.8385912808; | |
256 double c5 = 0.742380924027; | |
257 double c6 = 3.99019417011; | |
258 double con = 1.28; | |
259 double d1 = 1.00000615302; | |
260 double d2 = 1.98615381364; | |
261 double d3 = 5.29330324926; | |
262 double d4 = -15.1508972451; | |
263 double d5 = 30.789933034; | |
264 double ltone = 7.0; | |
265 double p = 0.398942280444; | |
266 double q = 0.39990348504; | |
267 double r = 0.398942280385; | |
268 bool up; | |
269 double utzero = 18.66; | |
270 double value; | |
271 double y; | |
272 double z; | |
273 | |
274 up = upper; | |
275 z = x; | |
276 | |
277 if ( z < 0.0 ) | |
278 { | |
279 up = !up; | |
280 z = - z; | |
281 } | |
282 | |
283 if ( ltone < z && ( ( !up ) || utzero < z ) ) | |
284 { | |
285 if ( up ) | |
286 { | |
287 value = 0.0; | |
288 } | |
289 else | |
290 { | |
291 value = 1.0; | |
292 } | |
293 return value; | |
294 } | |
295 | |
296 y = 0.5 * z * z; | |
297 | |
298 if ( z <= con ) | |
299 { | |
300 value = 0.5 - z * ( p - q * y | |
301 / ( y + a1 + b1 | |
302 / ( y + a2 + b2 | |
303 / ( y + a3 )))); | |
304 } | |
305 else | |
306 { | |
307 value = r * exp ( - y ) | |
308 / ( z + c1 + d1 | |
309 / ( z + c2 + d2 | |
310 / ( z + c3 + d3 | |
311 / ( z + c4 + d4 | |
312 / ( z + c5 + d5 | |
313 / ( z + c6 )))))); | |
314 } | |
315 | |
316 if ( !up ) | |
317 { | |
318 value = 1.0 - value; | |
319 } | |
320 | |
321 return value; | |
322 } | |
323 | |
324 //****************************************************************************80 | |
325 | |
326 double gammad ( double x, double p, int *ifault ) | |
327 | |
328 //****************************************************************************80 | |
329 // | |
330 // Purpose: | |
331 // | |
332 // GAMMAD computes the Incomplete Gamma Integral | |
333 // | |
334 // Licensing: | |
335 // | |
336 // This code is distributed under the GNU LGPL license. | |
337 // | |
338 // Modified: | |
339 // | |
340 // 20 January 2008 | |
341 // | |
342 // Author: | |
343 // | |
344 // Original FORTRAN77 version by B Shea. | |
345 // C++ version by John Burkardt. | |
346 // | |
347 // Reference: | |
348 // | |
349 // B Shea, | |
350 // Algorithm AS 239: | |
351 // Chi-squared and Incomplete Gamma Integral, | |
352 // Applied Statistics, | |
353 // Volume 37, Number 3, 1988, pages 466-473. | |
354 // | |
355 // Parameters: | |
356 // | |
357 // Input, double X, P, the parameters of the incomplete | |
358 // gamma ratio. 0 <= X, and 0 < P. | |
359 // | |
360 // Output, int IFAULT, error flag. | |
361 // 0, no error. | |
362 // 1, X < 0 or P <= 0. | |
363 // | |
364 // Output, double GAMMAD, the value of the incomplete | |
365 // Gamma integral. | |
366 // | |
367 { | |
368 double a; | |
369 double an; | |
370 double arg; | |
371 double b; | |
372 double c; | |
373 double elimit = - 88.0; | |
374 double oflo = 1.0E+37; | |
375 double plimit = 1000.0; | |
376 double pn1; | |
377 double pn2; | |
378 double pn3; | |
379 double pn4; | |
380 double pn5; | |
381 double pn6; | |
382 double rn; | |
383 double tol = 1.0E-14; | |
384 bool upper; | |
385 double value; | |
386 double xbig = 1.0E+08; | |
387 | |
388 value = 0.0; | |
389 // | |
390 // Check the input. | |
391 // | |
392 if ( x < 0.0 ) | |
393 { | |
394 *ifault = 1; | |
395 return value; | |
396 } | |
397 | |
398 if ( p <= 0.0 ) | |
399 { | |
400 *ifault = 1; | |
401 return value; | |
402 } | |
403 | |
404 *ifault = 0; | |
405 | |
406 if ( x == 0.0 ) | |
407 { | |
408 value = 0.0; | |
409 return value; | |
410 } | |
411 // | |
412 // If P is large, use a normal approximation. | |
413 // | |
414 if ( plimit < p ) | |
415 { | |
416 pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) | |
417 + 1.0 / ( 9.0 * p ) - 1.0 ); | |
418 | |
419 upper = false; | |
420 value = alnorm ( pn1, upper ); | |
421 return value; | |
422 } | |
423 // | |
424 // If X is large set value = 1. | |
425 // | |
426 if ( xbig < x ) | |
427 { | |
428 value = 1.0; | |
429 return value; | |
430 } | |
431 // | |
432 // Use Pearson's series expansion. | |
433 // (Note that P is not large enough to force overflow in ALOGAM). | |
434 // No need to test IFAULT on exit since P > 0. | |
435 // | |
436 if ( x <= 1.0 || x < p ) | |
437 { | |
438 arg = p * log ( x ) - x - lgamma ( p + 1.0 ); | |
439 c = 1.0; | |
440 value = 1.0; | |
441 a = p; | |
442 | |
443 for ( ; ; ) | |
444 { | |
445 a = a + 1.0; | |
446 c = c * x / a; | |
447 value = value + c; | |
448 | |
449 if ( c <= tol ) | |
450 { | |
451 break; | |
452 } | |
453 } | |
454 | |
455 arg = arg + log ( value ); | |
456 | |
457 if ( elimit <= arg ) | |
458 { | |
459 value = exp ( arg ); | |
460 } | |
461 else | |
462 { | |
463 value = 0.0; | |
464 } | |
465 } | |
466 // | |
467 // Use a continued fraction expansion. | |
468 // | |
469 else | |
470 { | |
471 arg = p * log ( x ) - x - lgamma ( p ); | |
472 a = 1.0 - p; | |
473 b = a + x + 1.0; | |
474 c = 0.0; | |
475 pn1 = 1.0; | |
476 pn2 = x; | |
477 pn3 = x + 1.0; | |
478 pn4 = x * b; | |
479 value = pn3 / pn4; | |
480 | |
481 for ( ; ; ) | |
482 { | |
483 a = a + 1.0; | |
484 b = b + 2.0; | |
485 c = c + 1.0; | |
486 an = a * c; | |
487 pn5 = b * pn3 - an * pn1; | |
488 pn6 = b * pn4 - an * pn2; | |
489 | |
490 if ( pn6 != 0.0 ) | |
491 { | |
492 rn = pn5 / pn6; | |
493 | |
494 if ( fabs ( value - rn ) <= r8_min ( tol, tol * rn ) ) | |
495 { | |
496 break; | |
497 } | |
498 value = rn; | |
499 } | |
500 | |
501 pn1 = pn3; | |
502 pn2 = pn4; | |
503 pn3 = pn5; | |
504 pn4 = pn6; | |
505 // | |
506 // Re-scale terms in continued fraction if terms are large. | |
507 // | |
508 if ( oflo <= fabs ( pn5 ) ) | |
509 { | |
510 pn1 = pn1 / oflo; | |
511 pn2 = pn2 / oflo; | |
512 pn3 = pn3 / oflo; | |
513 pn4 = pn4 / oflo; | |
514 } | |
515 } | |
516 | |
517 arg = arg + log ( value ); | |
518 | |
519 if ( elimit <= arg ) | |
520 { | |
521 value = 1.0 - exp ( arg ); | |
522 } | |
523 else | |
524 { | |
525 value = 1.0; | |
526 } | |
527 } | |
528 | |
529 return value; | |
530 } | |
531 | |
532 double r8_min ( double x, double y ) | |
533 | |
534 //****************************************************************************80 | |
535 // | |
536 // Purpose: | |
537 // | |
538 // R8_MIN returns the minimum of two R8's. | |
539 // | |
540 // Licensing: | |
541 // | |
542 // This code is distributed under the GNU LGPL license. | |
543 // | |
544 // Modified: | |
545 // | |
546 // 31 August 2004 | |
547 // | |
548 // Author: | |
549 // | |
550 // John Burkardt | |
551 // | |
552 // Parameters: | |
553 // | |
554 // Input, double X, Y, the quantities to compare. | |
555 // | |
556 // Output, double R8_MIN, the minimum of X and Y. | |
557 // | |
558 { | |
559 double value; | |
560 | |
561 if ( y < x ) | |
562 { | |
563 value = y; | |
564 } | |
565 else | |
566 { | |
567 value = x; | |
568 } | |
569 return value; | |
570 } | |
571 | |
572 // This function is implemented by Li Song. | |
573 // If Y follows (theta, k)=(1/alpha, k)-gamma distribution, then P_Y(Y<t)=gammad(alpha*t, k). | |
574 // Furthurmore, chi-square with d.f. k is gamma distribution (2, k/2) | |
575 double chicdf( double x, double df ) | |
576 { | |
577 int ifault ; | |
578 return gammad( x / 2.0, df / 2.0, &ifault ) ; | |
579 } | |
580 |