Mercurial > repos > lsong10 > psiclass
view PsiCLASS-1.0.2/stats.cpp @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
line wrap: on
line source
#include "stats.hpp" /** The digamma function in long double precision. * @param x the real value of the argument * @return the value of the digamma (psi) function at that point * @author Richard J. Mathar * @since 2005-11-24 */ long double digammal(long double x) { /* force into the interval 1..3 */ if( x < 0.0L ) return digammal(1.0L-x)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */ else if( x < 1.0L ) return digammal(1.0L+x)-1.0L/x ; else if ( x == 1.0L) return -M_GAMMAl ; else if ( x == 2.0L) return 1.0L-M_GAMMAl ; else if ( x == 3.0L) return 1.5L-M_GAMMAl ; else if ( x > 3.0L) /* duplication formula */ return 0.5L*(digammal(x/2.0L)+digammal((x+1.0L)/2.0L))+M_LN2l ; else { /* Just for your information, the following lines contain * the Maple source code to re-generate the table that is * eventually becoming the Kncoe[] array below * interface(prettyprint=0) : * Digits := 63 : * r := 0 : * * for l from 1 to 60 do * d := binomial(-1/2,l) : * r := r+d*(-1)^l*(Zeta(2*l+1) -1) ; * evalf(r) ; * print(%,evalf(1+Psi(1)-r)) ; *o d : * * for N from 1 to 28 do * r := 0 : * n := N-1 : * * for l from iquo(n+3,2) to 70 do * d := 0 : * for s from 0 to n+1 do * d := d+(-1)^s*binomial(n+1,s)*binomial((s-1)/2,l) : * od : * if 2*l-n > 1 then * r := r+d*(-1)^l*(Zeta(2*l-n) -1) : * fi : * od : * print(evalf((-1)^n*2*r)) ; *od : *quit : */ static long double Kncoe[] = { .30459198558715155634315638246624251L, .72037977439182833573548891941219706L, -.12454959243861367729528855995001087L, .27769457331927827002810119567456810e-1L, -.67762371439822456447373550186163070e-2L, .17238755142247705209823876688592170e-2L, -.44817699064252933515310345718960928e-3L, .11793660000155572716272710617753373e-3L, -.31253894280980134452125172274246963e-4L, .83173997012173283398932708991137488e-5L, -.22191427643780045431149221890172210e-5L, .59302266729329346291029599913617915e-6L, -.15863051191470655433559920279603632e-6L, .42459203983193603241777510648681429e-7L, -.11369129616951114238848106591780146e-7L, .304502217295931698401459168423403510e-8L, -.81568455080753152802915013641723686e-9L, .21852324749975455125936715817306383e-9L, -.58546491441689515680751900276454407e-10L, .15686348450871204869813586459513648e-10L, -.42029496273143231373796179302482033e-11L, .11261435719264907097227520956710754e-11L, -.30174353636860279765375177200637590e-12L, .80850955256389526647406571868193768e-13L, -.21663779809421233144009565199997351e-13L, .58047634271339391495076374966835526e-14L, -.15553767189204733561108869588173845e-14L, .41676108598040807753707828039353330e-15L, -.11167065064221317094734023242188463e-15L } ; register long double Tn_1 = 1.0L ; /* T_{n-1}(x), started at n=1 */ register long double Tn = x-2.0L ; /* T_{n}(x) , started at n=1 */ register long double resul = Kncoe[0] + Kncoe[1]*Tn ; x -= 2.0L ; int n ; for( n = 2 ; n < int( sizeof(Kncoe)/sizeof(long double) ) ; n++) { const long double Tn1 = 2.0L * x * Tn - Tn_1 ; /* Chebyshev recursion, Eq. 22.7.4 Abramowitz-Stegun */ resul += Kncoe[n]*Tn1 ; Tn_1 = Tn ; Tn = Tn1 ; } return resul ; } } double trigamma ( double x, int *ifault ) //**************************************************************************** // purpose: // // trigamma calculates trigamma(x) = d**2 log(gamma(x)) / dx**2 // // licensing: // // this code is distributed under the gnu lgpl license. // // modified: // // 19 january 2008 // // author: // // original fortran77 version by be schneider. // c++ version by john burkardt. // // reference: // // be schneider, // algorithm as 121: // trigamma function, // applied statistics, // volume 27, number 1, pages 97-99, 1978. // // parameters: // // input, double x, the argument of the trigamma function. // 0 < x. // // output, int *ifault, error flag. // 0, no error. // 1, x <= 0. // // output, double trigamma, the value of the trigamma function at x. // { double a = 0.0001; double b = 5.0; double b2 = 0.1666666667; double b4 = -0.03333333333; double b6 = 0.02380952381; double b8 = -0.03333333333; double value; double y; double z; // // check the input. // if ( x <= 0.0 ) { *ifault = 1; value = 0.0; return value; } *ifault = 0; z = x; // // use small value approximation if x <= a. // if ( x <= a ) { value = 1.0 / x / x; return value; } // // increase argument to ( x + i ) >= b. // value = 0.0; while ( z < b ) { value = value + 1.0 / z / z; z = z + 1.0; } // // apply asymptotic formula if argument is b or greater. // y = 1.0 / z / z; value = value + 0.5 * y + ( 1.0 + y * ( b2+ y * ( b4 + y * ( b6+ y * b8 )))) / z; return value; } double LogGammaDensity( double x, double k, double theta ) { return -k * log( theta ) + ( k - 1 ) * log( x ) - x / theta - lgamma( k ) ; } double MixtureGammaAssignment( double x, double pi, double* k, double *theta ) { if ( pi == 1 ) return 1 ; else if ( pi == 0 ) return 0 ; double lf0 = LogGammaDensity( x, k[0], theta[0] ) ; double lf1 = LogGammaDensity( x, k[1], theta[1] ) ; return (double)1.0 / ( 1.0 + exp( lf1 + log( 1 - pi ) - lf0 - log( pi ) ) ) ; } //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 double gammad ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMMAD computes the Incomplete Gamma Integral // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 January 2008 // // Author: // // Original FORTRAN77 version by B Shea. // C++ version by John Burkardt. // // Reference: // // B Shea, // Algorithm AS 239: // Chi-squared and Incomplete Gamma Integral, // Applied Statistics, // Volume 37, Number 3, 1988, pages 466-473. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int IFAULT, error flag. // 0, no error. // 1, X < 0 or P <= 0. // // Output, double GAMMAD, the value of the incomplete // Gamma integral. // { double a; double an; double arg; double b; double c; double elimit = - 88.0; double oflo = 1.0E+37; double plimit = 1000.0; double pn1; double pn2; double pn3; double pn4; double pn5; double pn6; double rn; double tol = 1.0E-14; bool upper; double value; double xbig = 1.0E+08; value = 0.0; // // Check the input. // if ( x < 0.0 ) { *ifault = 1; return value; } if ( p <= 0.0 ) { *ifault = 1; return value; } *ifault = 0; if ( x == 0.0 ) { value = 0.0; return value; } // // If P is large, use a normal approximation. // if ( plimit < p ) { pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) + 1.0 / ( 9.0 * p ) - 1.0 ); upper = false; value = alnorm ( pn1, upper ); return value; } // // If X is large set value = 1. // if ( xbig < x ) { value = 1.0; return value; } // // Use Pearson's series expansion. // (Note that P is not large enough to force overflow in ALOGAM). // No need to test IFAULT on exit since P > 0. // if ( x <= 1.0 || x < p ) { arg = p * log ( x ) - x - lgamma ( p + 1.0 ); c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= tol ) { break; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = exp ( arg ); } else { value = 0.0; } } // // Use a continued fraction expansion. // else { arg = p * log ( x ) - x - lgamma ( p ); a = 1.0 - p; b = a + x + 1.0; c = 0.0; pn1 = 1.0; pn2 = x; pn3 = x + 1.0; pn4 = x * b; value = pn3 / pn4; for ( ; ; ) { a = a + 1.0; b = b + 2.0; c = c + 1.0; an = a * c; pn5 = b * pn3 - an * pn1; pn6 = b * pn4 - an * pn2; if ( pn6 != 0.0 ) { rn = pn5 / pn6; if ( fabs ( value - rn ) <= r8_min ( tol, tol * rn ) ) { break; } value = rn; } pn1 = pn3; pn2 = pn4; pn3 = pn5; pn4 = pn6; // // Re-scale terms in continued fraction if terms are large. // if ( oflo <= fabs ( pn5 ) ) { pn1 = pn1 / oflo; pn2 = pn2 / oflo; pn3 = pn3 / oflo; pn4 = pn4 / oflo; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = 1.0 - exp ( arg ); } else { value = 1.0; } } return value; } double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } // This function is implemented by Li Song. // If Y follows (theta, k)=(1/alpha, k)-gamma distribution, then P_Y(Y<t)=gammad(alpha*t, k). // Furthurmore, chi-square with d.f. k is gamma distribution (2, k/2) double chicdf( double x, double df ) { int ifault ; return gammad( x / 2.0, df / 2.0, &ifault ) ; }