1
|
1 '''
|
|
2 Created on Feb2018
|
|
3
|
|
4 @author: bob brown
|
|
5 '''
|
|
6
|
|
7 import sys, traceback, argparse
|
|
8 import numpy as np
|
|
9 from Matrix_Validate_import import reader
|
|
10 #import matplotlib.pyplot as plt
|
|
11 from Matrix_Filters import Variance_Percent_Filter_row, Variance_Percent_Filter_col
|
|
12
|
|
13 #Define argparse Function
|
|
14 def get_args():
|
|
15 parser = argparse.ArgumentParser()
|
|
16 parser.add_argument('input_file_txt', help='tab delimited text file input matrix(include .txt in name)')
|
|
17 parser.add_argument('choice',type=str, help='Variance Filter Method (Variance or Range)')
|
|
18 parser.add_argument('thresh', help='Thershold for Variance Filtering')
|
|
19 parser.add_argument('axes', help='Axes to Filter on (Either Row or Column')
|
|
20 parser.add_argument('output_file_txt', help='tab delimited text file output name (include .txt in name)')
|
|
21 args = parser.parse_args()
|
|
22 return args
|
|
23
|
|
24
|
|
25 #Define Function Which Labels Rows/Columns on Output
|
|
26 def labeler(matrix,filter_rows,filter_cols,output_file_txt):
|
|
27
|
|
28 #Write Data to Specified Text File Output
|
|
29 with open(output_file_txt,'w') as f:
|
|
30 f.write("")
|
|
31 for k in range(0,len(filter_cols)):
|
|
32 f.write('\t' + filter_cols[k])
|
|
33 f.write('\n')
|
|
34 for i in range(0,len(filter_rows)):
|
|
35 f.write(filter_rows[i])
|
|
36 for j in range(0,len(matrix[0])):
|
|
37 f.write('\t' + format(matrix[i][j]))
|
|
38 f.write('\n')
|
|
39
|
|
40
|
|
41 def Histo(matrix):
|
|
42 numBins= 20
|
|
43 data = []
|
|
44 # numRow,numCol= np.shape(matrix)
|
|
45 for i in range(len(matrix[0])):
|
|
46 data.append(np.nanmean([row[i] for row in matrix]))
|
|
47
|
|
48 # print(str(np.nanmean([row[i] for row in matrix])))
|
|
49
|
|
50 #https://stackoverflow.com/questions/5328556/histogram-matplotlib
|
|
51 #bins = [0, 40, 60, 75, 90, 110, 125, 140, 160, 200]
|
|
52 minBin = int(min(data)-0.5)
|
|
53 maxBin = int(max(data)+0.5)
|
|
54 binWidth = float(maxBin-minBin)/numBins
|
|
55 bins= []
|
|
56 """
|
|
57 for j in range(numBins):
|
|
58 bins.append(minBin+ j*binWidth)
|
|
59 #bins= 20
|
|
60 n, bins, patches = plt.hist(data,bins, normed=False)
|
|
61 #n, bins, patches = plt.hist(data,bins, normed=1, color='green')
|
|
62 #hist, bins = np.histogram(data, bins=bins)
|
|
63 width = np.diff(bins)
|
|
64 center = (minBin + bins[1:]) / 2
|
|
65
|
|
66 cm = plt.cm.get_cmap('RdYlBu_r')
|
|
67 #col = (n-n.min())/(n.max()-n.min())
|
|
68 for c, p in zip(bins, patches):
|
|
69 plt.setp( p, 'facecolor', cm(c/numBins))
|
|
70 fig, ax = plt.subplots(num=1, figsize=(8,3))
|
|
71 ax.set_title("Distribution of Column Means")
|
|
72 #ax.bar(center,bins, align='center', width=width)
|
|
73 #ax.bar(center, hist, align='center', width=width)
|
|
74 #ax.set_xticks(bins)
|
|
75 # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/Column_Mean_Histogram.png")
|
|
76
|
|
77 plt.show()
|
|
78 """
|
|
79 return()
|
|
80
|
|
81 #========== test create variable number output files in Galaxy
|
|
82 def CreateFiles(output_file_info):
|
|
83
|
|
84 for i in range(3):
|
|
85 fd= open( output_file_info, 'w')
|
|
86 fd.write('File number = '+ str(i)+"\n")
|
|
87 fd.close()
|
|
88
|
|
89 return()
|
|
90
|
|
91 #==================
|
|
92
|
|
93 #Define Main Function
|
|
94 def main():
|
|
95 try:
|
|
96 args = get_args()
|
|
97 #sys.stdout.write(str(args)+"\n")
|
|
98 nanList= ["NAN", "NA", "N/A", "-","?","nan", "na", "n/a"]
|
|
99
|
|
100 matrix, og_cols,og_rows = reader(args.input_file_txt)
|
|
101 #old_reader matrix, og_rows, og_cols = reader(args.input_file_txt)
|
|
102 # if float(args.thresh) < 0.000001:
|
|
103 # print('Invalid negative threshold chosen = '+str(args.thresh)+" choose positive value")
|
|
104 # sys.exit(-4)
|
|
105
|
|
106 if args.choice == "Histogram":
|
|
107 Histo(matrix)
|
|
108 elif args.choice == "CreateFiles":
|
|
109 CreateFiles(args.output_file_info)
|
|
110
|
|
111 elif args.choice == "Variance":
|
|
112 if args.axes == "Row":
|
|
113 matrix, filter_rows, filter_cols,delCnt,minVal,maxVal = Variance_Percent_Filter_row(matrix,1,og_rows,og_cols,True)
|
|
114 labeler(matrix,filter_rows,filter_cols,args.output_file_txt)
|
|
115 # if delCnt < 1:
|
|
116 # print('\nNO Filtering occurred for rows using variance < '+str(args.thresh)+ ' by row. Matrix row minimum variance= %.2f' % minVal+' and maximum variance= %.2f' % maxVal)
|
|
117 # sys.stderr.write('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows')
|
|
118 # sys.exit(-1)
|
|
119 # else:
|
|
120 # print('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows')
|
|
121 elif args.axes == "Column":
|
|
122 matrix, filter_rows, filter_cols,delCnt,minVal,maxVal = Variance_Percent_Filter_col(matrix,1,og_rows,og_cols,True)
|
|
123 labeler(matrix,filter_rows,filter_cols,args.output_file_txt)
|
|
124 # if delCnt < 1:
|
|
125 # print('\nNO Filtering occurred for columns using variance < '+str(args.thresh)+ ' by columns. Matrix columns minimum variance= %.2f' % minVal+' and maximum variance= %.2f' % maxVal)
|
|
126 # sys.stderr.write('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows')
|
|
127 # sys.exit(-1)
|
|
128 # else:
|
|
129 # print('\nFiltering out columns using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' columns')
|
|
130 else:
|
|
131 print('Invalid Axes = '+str(args.axes))
|
|
132 sys.exit(-1)
|
|
133 else:
|
|
134 print("Invalid Filter Choice = "+str(args.choice))
|
|
135 sys.exit(-2)
|
|
136
|
|
137
|
|
138 except Exception as err:
|
|
139 traceback.print_exc()
|
|
140 sys.exit(-3)
|
|
141
|
|
142 if __name__ == '__main__':
|
|
143 main()
|
|
144 print("\nFini")
|
|
145 sys.exit(0) |