Mercurial > repos > md-anderson-bioinformatics > matrix_manipulation
view Matrix_Statistics.py @ 1:f1bcd79cd923 draft default tip
Uploaded
author | insilico-bob |
---|---|
date | Tue, 27 Nov 2018 14:20:40 -0500 |
parents | |
children |
line wrap: on
line source
''' Created on Feb2018 @author: bob brown ''' import sys, traceback, argparse import numpy as np from Matrix_Validate_import import reader #import matplotlib.pyplot as plt from Matrix_Filters import Variance_Percent_Filter_row, Variance_Percent_Filter_col #Define argparse Function def get_args(): parser = argparse.ArgumentParser() parser.add_argument('input_file_txt', help='tab delimited text file input matrix(include .txt in name)') parser.add_argument('choice',type=str, help='Variance Filter Method (Variance or Range)') parser.add_argument('thresh', help='Thershold for Variance Filtering') parser.add_argument('axes', help='Axes to Filter on (Either Row or Column') parser.add_argument('output_file_txt', help='tab delimited text file output name (include .txt in name)') args = parser.parse_args() return args #Define Function Which Labels Rows/Columns on Output def labeler(matrix,filter_rows,filter_cols,output_file_txt): #Write Data to Specified Text File Output with open(output_file_txt,'w') as f: f.write("") for k in range(0,len(filter_cols)): f.write('\t' + filter_cols[k]) f.write('\n') for i in range(0,len(filter_rows)): f.write(filter_rows[i]) for j in range(0,len(matrix[0])): f.write('\t' + format(matrix[i][j])) f.write('\n') def Histo(matrix): numBins= 20 data = [] # numRow,numCol= np.shape(matrix) for i in range(len(matrix[0])): data.append(np.nanmean([row[i] for row in matrix])) # print(str(np.nanmean([row[i] for row in matrix]))) #https://stackoverflow.com/questions/5328556/histogram-matplotlib #bins = [0, 40, 60, 75, 90, 110, 125, 140, 160, 200] minBin = int(min(data)-0.5) maxBin = int(max(data)+0.5) binWidth = float(maxBin-minBin)/numBins bins= [] """ for j in range(numBins): bins.append(minBin+ j*binWidth) #bins= 20 n, bins, patches = plt.hist(data,bins, normed=False) #n, bins, patches = plt.hist(data,bins, normed=1, color='green') #hist, bins = np.histogram(data, bins=bins) width = np.diff(bins) center = (minBin + bins[1:]) / 2 cm = plt.cm.get_cmap('RdYlBu_r') #col = (n-n.min())/(n.max()-n.min()) for c, p in zip(bins, patches): plt.setp( p, 'facecolor', cm(c/numBins)) fig, ax = plt.subplots(num=1, figsize=(8,3)) ax.set_title("Distribution of Column Means") #ax.bar(center,bins, align='center', width=width) #ax.bar(center, hist, align='center', width=width) #ax.set_xticks(bins) # fig.savefig("/Users/bobbrown/Desktop/Matrix-tools-Test-output/Column_Mean_Histogram.png") plt.show() """ return() #========== test create variable number output files in Galaxy def CreateFiles(output_file_info): for i in range(3): fd= open( output_file_info, 'w') fd.write('File number = '+ str(i)+"\n") fd.close() return() #================== #Define Main Function def main(): try: args = get_args() #sys.stdout.write(str(args)+"\n") nanList= ["NAN", "NA", "N/A", "-","?","nan", "na", "n/a"] matrix, og_cols,og_rows = reader(args.input_file_txt) #old_reader matrix, og_rows, og_cols = reader(args.input_file_txt) # if float(args.thresh) < 0.000001: # print('Invalid negative threshold chosen = '+str(args.thresh)+" choose positive value") # sys.exit(-4) if args.choice == "Histogram": Histo(matrix) elif args.choice == "CreateFiles": CreateFiles(args.output_file_info) elif args.choice == "Variance": if args.axes == "Row": matrix, filter_rows, filter_cols,delCnt,minVal,maxVal = Variance_Percent_Filter_row(matrix,1,og_rows,og_cols,True) labeler(matrix,filter_rows,filter_cols,args.output_file_txt) # if delCnt < 1: # print('\nNO Filtering occurred for rows using variance < '+str(args.thresh)+ ' by row. Matrix row minimum variance= %.2f' % minVal+' and maximum variance= %.2f' % maxVal) # sys.stderr.write('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows') # sys.exit(-1) # else: # print('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows') elif args.axes == "Column": matrix, filter_rows, filter_cols,delCnt,minVal,maxVal = Variance_Percent_Filter_col(matrix,1,og_rows,og_cols,True) labeler(matrix,filter_rows,filter_cols,args.output_file_txt) # if delCnt < 1: # print('\nNO Filtering occurred for columns using variance < '+str(args.thresh)+ ' by columns. Matrix columns minimum variance= %.2f' % minVal+' and maximum variance= %.2f' % maxVal) # sys.stderr.write('\nFiltering out rows using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' rows') # sys.exit(-1) # else: # print('\nFiltering out columns using variance < '+str(args.thresh)+ ' removed '+str(delCnt)+' columns') else: print('Invalid Axes = '+str(args.axes)) sys.exit(-1) else: print("Invalid Filter Choice = "+str(args.choice)) sys.exit(-2) except Exception as err: traceback.print_exc() sys.exit(-3) if __name__ == '__main__': main() print("\nFini") sys.exit(0)