Mercurial > repos > melpetera > batchcorrection
comparison batch_correction_wrapper.R @ 0:71d83d8920bf draft
planemo upload for repository https://github.com/workflow4metabolomics/batchcorrection.git commit de79117e6ab856420b87efca3675c7963688f975
author | melpetera |
---|---|
date | Tue, 09 Aug 2016 06:47:41 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:71d83d8920bf |
---|---|
1 #!/usr/bin/Rscript --vanilla --slave --no-site-file | |
2 | |
3 ################################################################################################ | |
4 # batch_correction_wrapper # | |
5 # # | |
6 # Author: Marion LANDI / Jean-Francois MARTIN / Melanie Petera # | |
7 # User: Galaxy # | |
8 # Original data: -- # | |
9 # Starting date: 22-07-2014 # | |
10 # Version 1: 22-07-2014 # | |
11 # Version 2: 08-12-2014 # | |
12 # Version 2.1: 09-01-2015 modification in Error message of sample matching # | |
13 # Version 2.2: 16-03-2015 inclusion of miniTools' functions for special characters # | |
14 # # | |
15 # # | |
16 # Input files: dataMatrix.txt ; sampleMetadata.txt ; variableMetadata.txt (for DBC) # | |
17 # Output files: graph_output.pdf ; corrected table ; diagnostic table # | |
18 # # | |
19 ################################################################################################ | |
20 | |
21 | |
22 library(batch) #necessary for parseCommandArgs function | |
23 args = parseCommandArgs(evaluate=FALSE) #interpretation of arguments given in command line as an R list of objects | |
24 | |
25 source_local <- function(...){ | |
26 argv <- commandArgs(trailingOnly = FALSE) | |
27 base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) | |
28 for(i in 1:length(list(...))){source(paste(base_dir, list(...)[[i]], sep="/"))} | |
29 } | |
30 #Import the different functions | |
31 source_local("Normalisation_QCpool.r","easyrlibrary-lib/RcheckLibrary.R","easyrlibrary-lib/miniTools.R") | |
32 | |
33 | |
34 ## Reading of input files | |
35 idsample=read.table(args$sampleMetadata,header=T,sep='\t',check.names=FALSE) | |
36 iddata=read.table(args$dataMatrix,header=T,sep='\t',check.names=FALSE) | |
37 | |
38 ### Table match check | |
39 table.check <- match2(iddata,idsample,"sample") | |
40 | |
41 ### StockID | |
42 samp.id <- stockID(iddata,idsample,"sample") | |
43 iddata<-samp.id$dataMatrix ; idsample<-samp.id$Metadata ; samp.id<-samp.id$id.match | |
44 | |
45 ### Checking mandatory variables | |
46 mand.check <- "" | |
47 for(mandcol in c("sampleType","injectionOrder","batch")){ | |
48 if(!(mandcol%in%colnames(idsample))){ | |
49 mand.check <- c(mand.check,"\nError: no '",mandcol,"' column in sample metadata.\n", | |
50 "Note: table must include this exact column name (it is case-sensitive).\n") | |
51 } | |
52 } | |
53 if(length(mand.check)>1){check.err(paste(table.check,mand.check,sep=""))} | |
54 | |
55 ### Formating | |
56 idsample[[1]]=make.names(idsample[[1]]) | |
57 dimnames(iddata)[[1]]=iddata[[1]] | |
58 | |
59 ### Transposition of ions data | |
60 idTdata=t(iddata[,2:dim(iddata)[2]]) | |
61 idTdata=data.frame(dimnames(idTdata)[[1]],idTdata) | |
62 | |
63 ### Merge of 2 files (ok even if the two dataframe are not sorted on the same key) | |
64 id=merge(idsample, idTdata, by.x=1, by.y=1) | |
65 | |
66 id$batch=as.factor(id$batch) | |
67 ids=id[id$sampleType == 'pool' | id$sampleType == 'sample',] | |
68 nbid=dim(idsample)[2] | |
69 | |
70 ### Checking the number of sample and pool | |
71 | |
72 # least 2 samples | |
73 if(length(which(ids$sampleType == "sample"))<2){ | |
74 table.check <- c(table.check,"\nError: less than 2 samples specified in sample metadata.", | |
75 "\nMake sure this is not due to errors in sampleType coding.\n") | |
76 } | |
77 | |
78 # least 2 pools per batch for all batchs | |
79 B <- rep(0,length(levels(ids$batch))) | |
80 for(nbB in length(levels(ids$batch))){ | |
81 B[nbB]<-length(which(ids[which(ids$batch==(levels(ids$batch)[nbB])),]$sampleType == "pool")) | |
82 } | |
83 if(length(which(B>1))==0){ | |
84 table.check <- c(table.check,"\nError: less than 2 pools specified in each batch in sample metadata.", | |
85 "\nMake sure this is not due to errors in sampleType coding.\n") | |
86 } | |
87 | |
88 ### Factor of interest | |
89 factbio=args$ref_factor | |
90 | |
91 | |
92 if(args$analyse == "batch_correction") { | |
93 ## Reading of Metadata Ions file | |
94 metaion=read.table(args$variableMetadata,header=T,sep='\t',check.names=FALSE) | |
95 ## Table match check | |
96 table.check <- c(table.check,match2(iddata,metaion,"variable")) | |
97 check.err(table.check) | |
98 | |
99 ## variables | |
100 detail=args$detail | |
101 method=args$method | |
102 | |
103 ## outputs | |
104 outfic=args$variable_for_simca | |
105 outlog=args$graph_output | |
106 | |
107 ## Launch | |
108 res = norm_QCpool(ids,nbid,outfic,outlog,factbio,metaion,detail,F,F,method,args$span) | |
109 save(res, file=args$rdata_output) | |
110 write.table(reproduceID(res[[1]],res[[3]],"sample",samp.id)$dataMatrix, file=args$dataMatrix_out, sep = '\t', row.names=F, quote=F) | |
111 write.table(res[[2]], file=args$variableMetadata_out, sep = '\t', row.names=F, quote=F) | |
112 }else{ | |
113 ## error check | |
114 check.err(table.check) | |
115 | |
116 ## outputs | |
117 out_graph_pdf=args$out_graph_pdf | |
118 out_preNormSummary=args$out_preNormSummary | |
119 | |
120 ## Launch | |
121 plotsituation(ids,nbid,out_graph_pdf,out_preNormSummary,factbio,args$span) | |
122 } | |
123 | |
124 rm(args) |