Mercurial > repos > melpetera > batchcorrection
view batch_correction_wrapper.R @ 0:71d83d8920bf draft
planemo upload for repository https://github.com/workflow4metabolomics/batchcorrection.git commit de79117e6ab856420b87efca3675c7963688f975
author | melpetera |
---|---|
date | Tue, 09 Aug 2016 06:47:41 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/Rscript --vanilla --slave --no-site-file ################################################################################################ # batch_correction_wrapper # # # # Author: Marion LANDI / Jean-Francois MARTIN / Melanie Petera # # User: Galaxy # # Original data: -- # # Starting date: 22-07-2014 # # Version 1: 22-07-2014 # # Version 2: 08-12-2014 # # Version 2.1: 09-01-2015 modification in Error message of sample matching # # Version 2.2: 16-03-2015 inclusion of miniTools' functions for special characters # # # # # # Input files: dataMatrix.txt ; sampleMetadata.txt ; variableMetadata.txt (for DBC) # # Output files: graph_output.pdf ; corrected table ; diagnostic table # # # ################################################################################################ library(batch) #necessary for parseCommandArgs function args = parseCommandArgs(evaluate=FALSE) #interpretation of arguments given in command line as an R list of objects source_local <- function(...){ argv <- commandArgs(trailingOnly = FALSE) base_dir <- dirname(substring(argv[grep("--file=", argv)], 8)) for(i in 1:length(list(...))){source(paste(base_dir, list(...)[[i]], sep="/"))} } #Import the different functions source_local("Normalisation_QCpool.r","easyrlibrary-lib/RcheckLibrary.R","easyrlibrary-lib/miniTools.R") ## Reading of input files idsample=read.table(args$sampleMetadata,header=T,sep='\t',check.names=FALSE) iddata=read.table(args$dataMatrix,header=T,sep='\t',check.names=FALSE) ### Table match check table.check <- match2(iddata,idsample,"sample") ### StockID samp.id <- stockID(iddata,idsample,"sample") iddata<-samp.id$dataMatrix ; idsample<-samp.id$Metadata ; samp.id<-samp.id$id.match ### Checking mandatory variables mand.check <- "" for(mandcol in c("sampleType","injectionOrder","batch")){ if(!(mandcol%in%colnames(idsample))){ mand.check <- c(mand.check,"\nError: no '",mandcol,"' column in sample metadata.\n", "Note: table must include this exact column name (it is case-sensitive).\n") } } if(length(mand.check)>1){check.err(paste(table.check,mand.check,sep=""))} ### Formating idsample[[1]]=make.names(idsample[[1]]) dimnames(iddata)[[1]]=iddata[[1]] ### Transposition of ions data idTdata=t(iddata[,2:dim(iddata)[2]]) idTdata=data.frame(dimnames(idTdata)[[1]],idTdata) ### Merge of 2 files (ok even if the two dataframe are not sorted on the same key) id=merge(idsample, idTdata, by.x=1, by.y=1) id$batch=as.factor(id$batch) ids=id[id$sampleType == 'pool' | id$sampleType == 'sample',] nbid=dim(idsample)[2] ### Checking the number of sample and pool # least 2 samples if(length(which(ids$sampleType == "sample"))<2){ table.check <- c(table.check,"\nError: less than 2 samples specified in sample metadata.", "\nMake sure this is not due to errors in sampleType coding.\n") } # least 2 pools per batch for all batchs B <- rep(0,length(levels(ids$batch))) for(nbB in length(levels(ids$batch))){ B[nbB]<-length(which(ids[which(ids$batch==(levels(ids$batch)[nbB])),]$sampleType == "pool")) } if(length(which(B>1))==0){ table.check <- c(table.check,"\nError: less than 2 pools specified in each batch in sample metadata.", "\nMake sure this is not due to errors in sampleType coding.\n") } ### Factor of interest factbio=args$ref_factor if(args$analyse == "batch_correction") { ## Reading of Metadata Ions file metaion=read.table(args$variableMetadata,header=T,sep='\t',check.names=FALSE) ## Table match check table.check <- c(table.check,match2(iddata,metaion,"variable")) check.err(table.check) ## variables detail=args$detail method=args$method ## outputs outfic=args$variable_for_simca outlog=args$graph_output ## Launch res = norm_QCpool(ids,nbid,outfic,outlog,factbio,metaion,detail,F,F,method,args$span) save(res, file=args$rdata_output) write.table(reproduceID(res[[1]],res[[3]],"sample",samp.id)$dataMatrix, file=args$dataMatrix_out, sep = '\t', row.names=F, quote=F) write.table(res[[2]], file=args$variableMetadata_out, sep = '\t', row.names=F, quote=F) }else{ ## error check check.err(table.check) ## outputs out_graph_pdf=args$out_graph_pdf out_preNormSummary=args$out_preNormSummary ## Launch plotsituation(ids,nbid,out_graph_pdf,out_preNormSummary,factbio,args$span) } rm(args)