Mercurial > repos > mheinzl > fsd
view fsd.py @ 5:69f47e0b804e draft
planemo upload for repository https://github.com/monikaheinzl/galaxyProject/tree/master/tools/fsd commit 9829d657c07703b117bed2f259ddba432b244312
author | mheinzl |
---|---|
date | Wed, 09 May 2018 09:13:46 -0400 |
parents | 648d5df50ca8 |
children | c4b8222dce29 |
line wrap: on
line source
#!/usr/bin/env python # Family size distribution of SSCSs # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: monika.heinzl@edumail.at # # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and # a CSV file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py filename --inputFile2 filename2 --inputFile3 filename3 --inputFile4 filename4 / # --title_file outputFileName --sep "characterWhichSeparatesCSVFile" import numpy import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import argparse import sys import os import re def readFileReferenceFree(file): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype='string') return(data_array) def make_argparser(): parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') # parser.add_argument('inputFile', # help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--inputFile2',default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName2') parser.add_argument('--inputFile3',default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName3') parser.add_argument('--inputFile4',default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName4') parser.add_argument('--sep', default=",", help='Separator in the csv file.') parser.add_argument('--output_csv', default="data.csv",type=str, help='Name of the pdf and csv file.') parser.add_argument('--output_pdf', default="data.pdf",type=str, help='Name of the pdf and csv file.') return parser def compare_read_families(argv): parser = make_argparser() args=parser.parse_args(argv[1:]) #firstFile = args.inputFile name1 = args.inputName1 firstFile = args.inputName1 secondFile = args.inputFile2 name2 = args.inputName2 thirdFile = args.inputFile3 name3 = args.inputName3 fourthFile = args.inputFile4 name4 = args.inputName4 title_file = args.output_csv title_file2 = args.output_pdf sep = args.sep if type(sep) is not str or len(sep)>1: print("Error: --sep must be a single character.") exit(4) plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['patch.edgecolor'] = "black" plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 list_to_plot = [] label = [] data_array_list = [] with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: fig = plt.figure() plt.subplots_adjust(bottom=0.25) if firstFile != str(None): file1 = readFileReferenceFree(firstFile) integers = numpy.array(file1[:, 0]).astype(int) ## keep original family sizes # for plot: replace all big family sizes by 22 data1 = numpy.array(file1[:, 0]).astype(int) bigFamilies = numpy.where(data1 > 20)[0] data1[bigFamilies] = 22 name1 = name1.split(".tabular")[0] list_to_plot.append(data1) label.append(name1) data_array_list.append(file1) legend = "\n\n\n{}".format(name1) plt.text(0.1, 0.11, legend, size=12, transform=plt.gcf().transFigure) legend1 = "singletons:\nabsolute nr.\n{:,}".format(numpy.bincount(data1)[1]) plt.text(0.4, 0.11, legend1, size=12, transform=plt.gcf().transFigure) legend3 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[1]) / len(data1)) plt.text(0.5, 0.11, legend3, size=12, transform=plt.gcf().transFigure) legend4 = "family size > 20:\nabsolute nr.\n{:,}".format( numpy.bincount(data1)[len(numpy.bincount(data1)) - 1].astype(int)) plt.text(0.6, 0.11, legend4, size=12, transform=plt.gcf().transFigure) legend5 = "rel. freq\n{:.3f}".format(float(numpy.bincount(data1)[len(numpy.bincount(data1)) - 1]) / len(data1)) plt.text(0.7, 0.11, legend5, size=12, transform=plt.gcf().transFigure) legend6 = "total length\n{:,}".format(len(data1)) plt.text(0.8, 0.11, legend6, size=12, transform=plt.gcf().transFigure) if secondFile != str(None): file2 = readFileReferenceFree(secondFile) data2 = numpy.asarray(file2[:, 0]).astype(int) bigFamilies2 = numpy.where(data2 > 20)[0] data2[bigFamilies2] = 22 list_to_plot.append(data2) name2 = name2.split(".tabular")[0] label.append(name2) data_array_list.append(file2) plt.text(0.1, 0.09, name2, size=12, transform=plt.gcf().transFigure) legend1 = "{:,}".format(numpy.bincount(data2)[1]) plt.text(0.4, 0.09, legend1, size=12, transform=plt.gcf().transFigure) legend3 = "{:.3f}".format(float(numpy.bincount(data2)[1]) / len(data2)) plt.text(0.5, 0.09, legend3, size=12, transform=plt.gcf().transFigure) legend4 = "{:,}".format(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1].astype(int)) plt.text(0.6, 0.09, legend4, size=12, transform=plt.gcf().transFigure) legend5 = "{:.3f}".format(float(numpy.bincount(data2)[len(numpy.bincount(data2)) - 1]) / len(data2)) plt.text(0.7, 0.09, legend5, size=12, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data2)) plt.text(0.8, 0.09, legend6, size=12, transform=plt.gcf().transFigure) if thirdFile != str(None): file3 = readFileReferenceFree(thirdFile) data3 = numpy.asarray(file3[:, 0]).astype(int) bigFamilies3 = numpy.where(data3 > 20)[0] data3[bigFamilies3] = 22 list_to_plot.append(data3) name3 = name3.split(".tabular")[0] label.append(name3) data_array_list.append(file3) plt.text(0.1, 0.07, name3, size=12, transform=plt.gcf().transFigure) legend1 = "{:,}".format(numpy.bincount(data3)[1]) plt.text(0.4, 0.07, legend1, size=12, transform=plt.gcf().transFigure) legend3 = "{:.3f}".format(float(numpy.bincount(data3)[1]) / len(data3)) plt.text(0.5, 0.07, legend3, size=12, transform=plt.gcf().transFigure) legend4 = "{:,}".format(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1].astype(int)) plt.text(0.6, 0.07, legend4, size=12, transform=plt.gcf().transFigure) legend5 = "{:.3f}".format(float(numpy.bincount(data3)[len(numpy.bincount(data3)) - 1]) / len(data3)) plt.text(0.7, 0.07, legend5, size=12, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data3)) plt.text(0.8, 0.07, legend6, size=12, transform=plt.gcf().transFigure) if fourthFile != str(None): file4 = readFileReferenceFree(fourthFile) data4 = numpy.asarray(file4[:, 0]).astype(int) bigFamilies4 = numpy.where(data4 > 20)[0] data4[bigFamilies4] = 22 list_to_plot.append(data4) name4 = name4.split(".tabular")[0] label.append(name4) data_array_list.append(file4) plt.text(0.1, 0.05, name4, size=12, transform=plt.gcf().transFigure) legend1 = "{:,}".format(numpy.bincount(data4)[1]) plt.text(0.4, 0.05, legend1, size=12, transform=plt.gcf().transFigure) legend4 = "{:.3f}".format(float(numpy.bincount(data4)[1]) / len(data4)) plt.text(0.5, 0.05, legend4, size=12, transform=plt.gcf().transFigure) legend4 = "{:,}".format(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1].astype(int)) plt.text(0.6, 0.05, legend4, size=12, transform=plt.gcf().transFigure) legend5 = "{:.3f}".format(float(numpy.bincount(data4)[len(numpy.bincount(data4)) - 1]) / len(data4)) plt.text(0.7, 0.05, legend5, size=12, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data4)) plt.text(0.8, 0.05, legend6, size=12, transform=plt.gcf().transFigure) maximumX = numpy.amax(numpy.concatenate(list_to_plot)) minimumX = numpy.amin(numpy.concatenate(list_to_plot)) counts = plt.hist(list_to_plot, bins=range(minimumX, maximumX + 1), stacked=False, edgecolor="black", linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) ticks = numpy.arange(minimumX - 1, maximumX, 1) ticks1 = map(str, ticks) ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) plt.title("Family Size Distribution", fontsize=14) plt.xlabel("No. of Family Members", fontsize=14) plt.ylabel("Absolute Frequency", fontsize=14) plt.margins(0.01, None) plt.grid(b=True, which="major", color="#424242", linestyle=":") pdf.savefig(fig) plt.close() # write data to CSV file output_file.write("Values from family size distribution with all datasets\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("{}sum".format(sep)) output_file.write("\n") j = 0 for fs in counts[1][0:len(counts[1]) - 1]: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) values_of_fs = [] if len(label) == 1: output_file.write("{}{}".format(int(counts[0][j]), sep)) values_of_fs.append(int(counts[0][j])) else: for n in range(len(label)): output_file.write("{}{}".format(int(counts[0][n][j]), sep)) values_of_fs.append(int(counts[0][n][j])) output_file.write("{}\n".format(sum(values_of_fs))) j += 1 output_file.write("sum{}".format(sep)) values_for_sum = [] if len(label) == 1: output_file.write("{}{}".format(int(sum(counts[0])), sep)) values_for_sum.append(int(sum(counts[0]))) else: for i in counts[0]: output_file.write("{}{}".format(int(sum(i)), sep)) values_for_sum.append(int(sum(i))) output_file.write("{}\n".format(sum(values_for_sum))) ### Family size distribution after DCS and SSCS for dataset, data, name_file in zip(list_to_plot, data_array_list, label): maximumX = numpy.amax(dataset) minimumX = numpy.amin(dataset) tags = numpy.array(data[:, 2]) seq = numpy.array(data[:, 1]) data = numpy.array(dataset) # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for duplicates duplTags_double = data[numpy.in1d(seq, d)] duplTags = duplTags_double[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS duplTags_double_tag = tags[numpy.in1d(seq, d)] duplTags_double_seq = seq[numpy.in1d(seq, d)] # get family sizes for SSCS with no partner ab = numpy.where(tags == "ab")[0] abSeq = seq[ab] ab = data[ab] ba = numpy.where(tags == "ba")[0] baSeq = seq[ba] ba = data[ba] dataAB = ab[numpy.in1d(abSeq, d, invert=True)] dataBA = ba[numpy.in1d(baSeq, d, invert=True)] # write DCS tags to file # with open("DCS information_{}.txt".format(firstFile), "w") as file: # for t, s, f in zip(duplTags_double_tag, duplTags_double_seq, duplTags_double): # file.write("{}\t{}\t{}\n".format(t, s, f)) list1 = [duplTags_double, dataAB, dataBA] # list for plotting ## information for family size >= 3 dataAB_FS3 = dataAB[dataAB >= 3] dataBA_FS3 = dataBA[dataBA >= 3] ab_FS3 = ab[ab >= 3] ba_FS3 = ba[ba >= 3] duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 duplTags_double_FS3 = len(duplTags_FS3)+len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 fig = plt.figure() plt.subplots_adjust(bottom=0.3) counts = plt.hist(list1, bins=range(minimumX, maximumX + 1), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"]) # tick labels of x axis ticks = numpy.arange(minimumX - 1, maximumX, 1) ticks1 = map(str, ticks) ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) singl = counts[0][2][0] # singletons last = counts[0][2][len(counts[0][0]) - 1] # large families plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title(name1, fontsize=14) plt.xlabel("No. of Family Members", fontsize=14) plt.ylabel("Absolute Frequency", fontsize=14) plt.margins(0.01, None) plt.grid(b=True, which="major", color="#424242", linestyle=":") ## extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \nlength of dataset=" plt.text(0.1, 0.09, legend, size=12, transform=plt.gcf().transFigure) legend = "absolute numbers\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,}" \ .format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.35, 0.09, legend, size=12, transform=plt.gcf().transFigure) legend = "relative frequencies\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}" \ .format(float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=12, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}" \ .format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=12, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=12, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl.astype(int), last.astype(int)) plt.text(0.35, 0.03, legend4, size=12, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(singl / len(data),last / len(data)) plt.text(0.54, 0.03, legend3, size=12, transform=plt.gcf().transFigure) pdf.savefig(fig) plt.close() # write same information to a csv file count = numpy.bincount(integers) # original counts of family sizes output_file.write("\nDataset:{}{}\n".format(sep, name_file)) output_file.write("max. family size:{}{}\n".format(sep, max(integers))) output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) output_file.write("{}singletons:{}{}family size > 20:\n".format(sep, sep, sep)) output_file.write( "{}absolute nr.{}rel. freq{}absolute nr.{}rel. freq{}total length\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}{}{:.3f}{}{}{}{:.3f}{}{}\n\n".format(name_file, sep, singl.astype(int), sep, singl / len(data), sep,last.astype(int), sep, last / len(data), sep, len(data))) ## information for FS >= 1 output_file.write( "The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\n" \ "Whereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") output_file.write("FS >= 1{}{}unique:{}total:\n".format(sep, sep, sep)) output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len( duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba)))) output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA), sep, float(len(dataBA)) / (len(dataBA) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ba) + len(ba)))) output_file.write( "nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags), len(duplTags_double), sep, float(len(duplTags)) / ( len(dataAB) + len( dataBA) + len(duplTags)), sep, float(len(duplTags)) / ( len(ab) + len(ba)), float( len(duplTags_double)) / (len(ab) + len(ba)))) output_file.write( "length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep,(len(ab) + len(ba)))) ## information for FS >= 3 output_file.write("FS >= 3{}{}unique:{}total:\n".format(sep, sep, sep)) output_file.write("nr./rel. freq of ab={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataAB_FS3), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / ( len(ab_FS3) + len(ba_FS3)))) output_file.write("nr./rel. freq of ba={}{}{}{:.3f}{}{:.3f}\n".format(sep, len(dataBA_FS3), sep, float(len(dataBA_FS3)) / ( len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep,float(len(dataBA_FS3)) / (len(ba_FS3) + len(ba_FS3)))) output_file.write( "nr./rel. freq of DCS (total)={}{} ({}){}{:.3f}{}{:.3f} ({:.3f})\n".format(sep, len(duplTags_FS3),duplTags_double_FS3, sep, float(len( duplTags_FS3)) / (len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(ab_FS3) + len(ba_FS3)), float(duplTags_double_FS3) / (len(ab_FS3) + len(ba_FS3)))) output_file.write( "length of dataset={}{}{}{}{}{}\n".format(sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(ab_FS3) + len(ba_FS3)))) output_file.write("\nValues from family size distribution\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) for dx, ab, ba, fs in zip(counts[0][0], counts[0][1], counts[0][2], counts[1]): if fs == 21: fs = ">20" else: fs = "={}".format(fs) ab1 = ab - dx ba1 = ba - ab output_file.write( "FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(dx), sep, int(ab1), sep, int(ba1), sep, int(ba))) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families(sys.argv))