view fsd_beforevsafter.py @ 3:327c40a821ed draft

planemo upload for repository https://github.com/monikaheinzl/galaxyProject/tree/master/tools/fsd_beforevsafter commit 29bc65d5627553741c83ce1f298223e2b266f7c8
author mheinzl
date Tue, 15 May 2018 14:22:10 -0400
parents e8115b71edbd
children 1eae0524b285
line wrap: on
line source

#!/usr/bin/env python

# Family size distribution of DCS from various steps of the Galaxy pipeline
#
# Author: Monika Heinzl, Johannes-Kepler University Linz (Austria)
# Contact: monika.heinzl@edumail.at
#
# Takes a TXT file with tags of reads that were aligned to certain regions of the reference genome (optional),
# a TABULAR file with tags before the alignment to the SSCS, a FASTA file with reads that were part of the DCS and
# a FASTA file with tags after trimming as input (optional).
# The program produces a plot which shows the distribution of family sizes of the DCS from the input files and
# a CSV file with the data of the plot.

# USAGE: python FSD before vs after_no_refF1.3_FINAL.py --inputFile_SSCS filenameSSCS --inputName1 filenameSSCS --makeDCS filenameMakeDCS --afterTrimming filenameAfterTrimming -- alignedTags filenameTagsRefGenome 
# --sep "characterWhichSeparatesCSVFile" --output_csv outptufile_name_csv --output_pdf outptufile_name_pdf


import numpy
import matplotlib.pyplot as plt
from collections import Counter
from Bio import SeqIO
import argparse
import sys
import os
from matplotlib.backends.backend_pdf import PdfPages

def readFileReferenceFree(file, delim):
    with open(file, 'r') as dest_f:
        data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype='string')
        return(data_array)

def readFasta(file):
    tag_consensus = []
    fs_consensus = []
    with open(file, "r") as consFile:
        for record in SeqIO.parse(consFile, "fasta"):
            tag_consensus.append(record.id)
            line = record.description
            a, b = line.split(" ")
            fs1, fs2 = b.split("-")
            fs_consensus.extend([fs1,fs2])
    fs_consensus = numpy.array(fs_consensus).astype(int)
    return(tag_consensus, fs_consensus)

def make_argparser():
    parser = argparse.ArgumentParser(description='Analysis of read loss in duplex sequencing data')
    parser.add_argument('--inputFile_SSCS',
                        help='Tabular File with three columns: ab or ba, tag and family size.')
    parser.add_argument('--inputName1')
    parser.add_argument('--makeDCS',
                        help='FASTA File with information about tag and family size in the header.')
    parser.add_argument('--afterTrimming',default=None,
                        help='FASTA File with information about tag and family size in the header.')
    parser.add_argument('--alignedTags',default=None,
                        help=' TXT file with tags aligned to the reference genome and family size.')
    parser.add_argument('--output_pdf', default="data.pdf", type=str,
                        help='Name of the pdf and csv file.')
    parser.add_argument('--output_csv', default="data.csv", type=str,
                        help='Name of the pdf and csv file.')
    parser.add_argument('--sep', default=",",
                        help='Separator in the csv file.')
    return parser

def compare_read_families_read_loss(argv):
    parser = make_argparser()
    args = parser.parse_args(argv[1:])

    SSCS_file = args.inputFile_SSCS
    SSCS_file_name = args.inputName1
    makeConsensus = args.makeDCS
    afterTrimming = args.afterTrimming
    ref_genome = args.alignedTags
    title_file = args.output_csv
    title_file2 = args.output_pdf
    sep = args.sep

    if type(sep) is not str or len(sep)>1:
        print("Error: --sep must be a single character.")
        exit(4)

    with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf:
        ### PLOT ###
        plt.rc('figure', figsize=(11.69, 8.27))  # A4 format
        plt.rcParams['axes.facecolor'] = "E0E0E0"  # grey background color
        plt.rcParams['xtick.labelsize'] = 14
        plt.rcParams['ytick.labelsize'] = 14
        plt.rcParams['patch.edgecolor'] = "black"
        fig = plt.figure()
        plt.subplots_adjust(bottom=0.3)

        list1 = []
        colors = []
        labels = []

### data with tags of SSCS
        data_array = readFileReferenceFree(SSCS_file, "\t")
        seq = numpy.array(data_array[:, 1])
        tags = numpy.array(data_array[:, 2])
        quant = numpy.array(data_array[:, 0]).astype(int)

        # split data with all tags of SSCS after ab and ba strands
        all_ab = seq[numpy.where(tags == "ab")[0]]
        all_ba = seq[numpy.where(tags == "ba")[0]]
        quant_ab_sscs = quant[numpy.where(tags == "ab")[0]]
        quant_ba_sscs = quant[numpy.where(tags == "ba")[0]]

        seqDic_ab = dict(zip(all_ab, quant_ab_sscs))
        seqDic_ba = dict(zip(all_ba, quant_ba_sscs))

        ### get tags of the SSCS which form a DCS
        # group large family sizes
        bigFamilies = numpy.where(quant > 20)[0]
        quant[bigFamilies] = 22
        maximumX = numpy.amax(quant)

        # find all unique tags and get the indices for ALL tags (ab AND ba)
        u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True)
        d = u[c > 1]

        # get family sizes, tag for the duplicates
        duplTags_double = quant[numpy.in1d(seq, d)]
        list1.append(duplTags_double)
        colors.append("#0000FF")
        labels.append("before alignment\nto SSCS")

        duplTags = duplTags_double[0::2]  # ab of DCS
        duplTagsBA = duplTags_double[1::2]  # ba of DCS

        d2 = d[(duplTags >= 3) & (duplTagsBA >= 3)]  # ab and ba FS>=3

        # all SSCSs FS>=3
        seq_unique, seqUnique_index = numpy.unique(seq, return_index=True)
        seq_unique_FS = quant[seqUnique_index]
        seq_unique_FS3 = seq_unique_FS[seq_unique_FS >= 3]

        legend1 = "\ntotal nr. of tags (unique, FS>=1):\nDCS (before alignment to SSCS, FS>=1):\ntotal nr. of tags (unique, FS>=3):\nDCS (before alignment to SSCS, FS>=3):"
        legend2 = "total numbers * \n{:,}\n{:,}\n{:,}\n{:,}".format(len(seq_unique_FS), len(duplTags),
                                                                    len(seq_unique_FS3), len(d2))
        plt.text(0.55, 0.14, legend1, size=11, transform=plt.gcf().transFigure)
        plt.text(0.88, 0.14, legend2, size=11, transform=plt.gcf().transFigure)

## data make DCS
        tag_consensus, fs_consensus = readFasta(makeConsensus)
        ### group large family sizes in the plot of fasta files
        bigFamilies = numpy.where(fs_consensus > 20)[0]
        fs_consensus[bigFamilies] = 22
        list1.append(fs_consensus)
        colors.append("#298A08")
        labels.append("make DCS")
        legend3 = "make DCS:"
        legend4 = "{:,}".format(len(tag_consensus))
        plt.text(0.55, 0.11, legend3, size=11, transform=plt.gcf().transFigure)
        plt.text(0.88, 0.11, legend4, size=11, transform=plt.gcf().transFigure)

### data after trimming
        if afterTrimming != str(None):
            tag_trimming, fs_trimming = readFasta(afterTrimming)
            bigFamilies = numpy.where(fs_trimming > 20)[0]
            fs_trimming[bigFamilies] = 22
            list1.append(fs_trimming)
            colors.append("#DF0101")
            labels.append("after trimming")
            legend5 = "after trimming:"
            legend6 = "{:,}".format(len(tag_trimming))
            plt.text(0.55, 0.09, legend5, size=11, transform=plt.gcf().transFigure)
            plt.text(0.88, 0.09, legend6, size=11, transform=plt.gcf().transFigure)

### data of tags aligned to reference genome
        if ref_genome != str(None):
            mut_array = readFileReferenceFree(ref_genome, " ")
            ### use only unique tags that were alignment to the reference genome
            seq_mut, seqMut_index = numpy.unique(numpy.array(mut_array[:, 1]), return_index=True)

            # get family sizes
            quant_ab = []
            for i in seq_mut:
                quant_ab.append(seqDic_ab.get(i))

            quant_ba = []
            for i in seq_mut:
                quant_ba.append(seqDic_ba.get(i))

            quant_ab_ref = numpy.array(quant_ab)
            quant_ba_ref = numpy.array(quant_ba)
            quant_all_ref = numpy.concatenate((quant_ab_ref, quant_ba_ref))
            bigFamilies = numpy.where(quant_all_ref > 20)[0]  # group large family sizes
            quant_all_ref[bigFamilies] = 22
            list1.append(quant_all_ref)
            colors.append("#04cec7")
            labels.append("after alignment\nto reference genome")
            legend7 = "after alignment to reference genome:"
            length_DCS_ref = len(quant_ba_ref)  # count of duplex tags that were aligned to reference genome
            legend8 = "{:,}".format(length_DCS_ref)
            plt.text(0.55, 0.07, legend7, size=11, transform=plt.gcf().transFigure)
            plt.text(0.88, 0.07, legend8, size=11, transform=plt.gcf().transFigure)


        counts = plt.hist(list1, bins=range(-1, maximumX + 1), stacked=False, label=labels, color=colors,
                          align="left", alpha=1, edgecolor="black", linewidth=1)
        ticks = numpy.arange(0, maximumX, 1)
        ticks1 = map(str, ticks)
        ticks1[len(ticks1) - 1] = ">20"
        plt.xticks(numpy.array(ticks), ticks1)
        if ref_genome != str(None):
            count = numpy.array(
                [v for k, v in sorted(Counter(quant_ab_ref).iteritems())])  # count all family sizes from all ab strands

            legend = "max. family size =\nabsolute frequency=\nrelative frequency=\n\ntotal nr. of reads (before)"
            plt.text(0.1, 0.105, legend, size=11, transform=plt.gcf().transFigure)

            legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}" \
                .format(max(quant_ab_ref), count[len(count) - 1], float(count[len(count) - 1]) / sum(count),
                        sum(numpy.array(data_array[:, 0]).astype(int)))
            plt.text(0.3, 0.105, legend, size=11, transform=plt.gcf().transFigure)

            count2 = numpy.array(
                [v for k, v in sorted(Counter(quant_ba_ref).iteritems())])  # count all family sizes from all ba strands
            legend = "BA\n{}\n{}\n{:.5f}" \
                .format(max(quant_ba_ref), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2))
            plt.text(0.4, 0.15, legend, size=11, transform=plt.gcf().transFigure)

        legend4 = "* In the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags."
        plt.text(0.1, 0.02, legend4, size=11, transform=plt.gcf().transFigure)

        plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True)
        plt.title("Family size distribution of tags from various steps of the Du Novo pipeline", fontsize=14)
        plt.xlabel("Family size", fontsize=14)
        plt.ylabel("Absolute Frequency", fontsize=14)
        plt.grid(b=True, which="major", color="#424242", linestyle=":")
        plt.margins(0.01, None)

        pdf.savefig(fig, bbox_inch="tight")
        plt.close()

    # write information about plot into a csv file
        output_file.write("Dataset:{}{}\n".format(sep, SSCS_file_name))
        if ref_genome != str(None):
            output_file.write("{}AB{}BA\n".format(sep, sep))
            output_file.write("max. family size:{}{}{}{}\n".format(sep, max(quant_ab_ref), sep, max(quant_ba_ref)))
            output_file.write(
                "absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1]))
            output_file.write(
                "relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep,
                                                                 float(count2[len(count2) - 1]) / sum(count2)))

        output_file.write("\n\ntotal nr. of reads{}{}\n".format(sep, sum(numpy.array(data_array[:, 0]).astype(int))))
        output_file.write("\n\nValues from family size distribution\n")

        if afterTrimming == str(None) and ref_genome == str(None):
            if afterTrimming == str(None):
                output_file.write(
                "{}before alignment to SSCS{}make DCS\n".format(sep, sep))
            elif ref_genome == str(None):
                output_file.write(
                    "{}before alignment to SSCS{}make DCS\n".format(sep, sep))

            for fs, sscs, dcs in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])],
                                                      counts[0][1][2:len(counts[0][1])]):
                if fs == 21:
                    fs = ">20"
                else:
                    fs = "={}".format(fs)
                output_file.write(
                    "FS{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs)))
            output_file.write(
                "sum{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1]))))

        elif afterTrimming == str(None) or ref_genome == str(None):
            if afterTrimming == str(None):
                output_file.write(
                "{}before alignment to SSCS{}make DCS{}after alignment to reference genome\n".format(sep, sep, sep))
            elif ref_genome == str(None):
                output_file.write(
                    "{}before alignment to SSCS{}make DCS{}after trimming\n".format(sep, sep, sep))

            for fs, sscs, dcs, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])],
                                                      counts[0][1][2:len(counts[0][1])],counts[0][2][2:len(counts[0][2])]):
                if fs == 21:
                    fs = ">20"
                else:
                    fs = "={}".format(fs)
                output_file.write(
                    "FS{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(reference)))
            output_file.write(
                "sum{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep, int(sum(counts[0][2]))))

        else:
            output_file.write(
                "{}before alignment to SSCS{}make DCS{}after trimming{}after alignment to reference genome\n".format(
                    sep, sep, sep, sep))
            for fs, sscs, dcs, trim, reference in zip(counts[1][2:len(counts[1])], counts[0][0][2:len(counts[0][0])],
                                                      counts[0][1][2:len(counts[0][1])],
                                                      counts[0][2][2:len(counts[0][2])],
                                                      counts[0][3][2:len(counts[0][3])]):
                if fs == 21:
                    fs = ">20"
                else:
                    fs = "={}".format(fs)
                output_file.write(
                    "FS{}{}{}{}{}{}{}{}{}\n".format(fs, sep, int(sscs), sep, int(dcs), sep, int(trim), sep,
                                                    int(reference)))
            output_file.write(
                "sum{}{}{}{}{}{}{}{}\n".format(sep, int(sum(counts[0][0])), sep, int(sum(counts[0][1])), sep,
                                               int(sum(counts[0][2])), sep, int(sum(counts[0][3]))))

        output_file.write("\n\nIn the plot, the family sizes of ab and ba strands and of both duplex tags were used.\nWhereas the total numbers indicate only the single count of the formed duplex tags.\n")
        output_file.write("total nr. of tags (unique, FS>=1){}{}\n".format(sep, len(seq_unique_FS)))
        output_file.write("DCS (before alignment to SSCS, FS>=1){}{}\n".format(sep, len(duplTags)))
        output_file.write("total nr. of tags (unique, FS>=3){}{}\n".format(sep, len(seq_unique_FS3)))
        output_file.write("DCS (before alignment to SSCS, FS>=3){}{}\n".format(sep, len(d2)))
        output_file.write("make DCS{}{}\n".format(sep, len(tag_consensus)))
        if afterTrimming != str(None):
            output_file.write("after trimming{}{}\n".format(sep, len(tag_trimming)))
        if ref_genome != str(None):
            output_file.write("after alignment to reference genome{}{}\n".format(sep, length_DCS_ref))

        print("Files successfully created!")

if __name__ == '__main__':
  sys.exit(compare_read_families_read_loss(sys.argv))