Mercurial > repos > mheinzl > fsd_regions
diff fsd_regions.py @ 11:37db9decb5d0 draft
planemo upload for repository https://github.com/monikaheinzl/duplexanalysis_galaxy/tree/master/tools/fsd_regions commit 2aea9e30f5ed4fd3db3fb44ddb8aacb48a62eccc
author | mheinzl |
---|---|
date | Mon, 26 Nov 2018 04:51:11 -0500 |
parents | eabfdc012d7b |
children | 63432e6f6a61 |
line wrap: on
line diff
--- a/fsd_regions.py Mon Nov 26 04:42:25 2018 -0500 +++ b/fsd_regions.py Mon Nov 26 04:51:11 2018 -0500 @@ -1,220 +1,270 @@ -#!/usr/bin/env python - -# Family size distribution of tags which were aligned to the reference genome -# -# Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) -# Contact: monika.heinzl@edumail.at -# -# Takes at least one TABULAR file with tags before the alignment to the SSCS -# and a TXT with tags of reads that overlap the regions of the reference genome as input. -# The program produces a plot which shows the distribution of family sizes of the tags from the input files and -# a tabular file with the data of the plot. - -# USAGE: python FSD_regions_1.6_FINAL.py --inputFile filenameSSCS --inputName1 filenameSSCS --ref_genome filenameRefGenome --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf - -import argparse -import re -import sys -from collections import OrderedDict - -import matplotlib.pyplot as plt -import numpy -from matplotlib.backends.backend_pdf import PdfPages - -plt.switch_backend('agg') - - -def readFileReferenceFree(file, delim): - with open(file, 'r') as dest_f: - data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype='string') - return(data_array) - - -def make_argparser(): - parser = argparse.ArgumentParser(description='Family Size Distribution of tags which were aligned to regions of the reference genome') - parser.add_argument('--inputFile', help='Tabular File with three columns: ab or ba, tag and family size.') - parser.add_argument('--inputName1') - parser.add_argument('--ref_genome', help='TXT File with tags of reads that overlap the region.') - parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf and tabular file.') - parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the pdf and tabular file.') - return parser - - -def compare_read_families_refGenome(argv): - parser = make_argparser() - args = parser.parse_args(argv[1:]) - - firstFile = args.inputFile - name1 = args.inputName1 - name1 = name1.split(".tabular")[0] - refGenome = args.ref_genome - title_file = args.output_pdf - title_file2 = args.output_tabular - sep = "\t" - - with open(title_file2, "w") as output_file, PdfPages(title_file) as pdf: - data_array = readFileReferenceFree(firstFile, "\t") - - mut_array = readFileReferenceFree(refGenome, " ") - group = numpy.array(mut_array[:, 0]) - seq_mut = numpy.array(mut_array[:, 1]) - - seq = numpy.array(data_array[:, 1]) - tags = numpy.array(data_array[:, 2]) - quant = numpy.array(data_array[:, 0]).astype(int) - - all_ab = seq[numpy.where(tags == "ab")[0]] - all_ba = seq[numpy.where(tags == "ba")[0]] - quant_ab = quant[numpy.where(tags == "ab")[0]] - quant_ba = quant[numpy.where(tags == "ba")[0]] - - seqDic_ab = dict(zip(all_ab, quant_ab)) - seqDic_ba = dict(zip(all_ba, quant_ba)) - - if re.search('_(\d)+_(\d)+$', str(mut_array[0,0])) is None: - seq_mut, seqMut_index = numpy.unique(numpy.array(mut_array[:, 1]), return_index=True) - group = mut_array[seqMut_index,0] - mut_array = mut_array[seqMut_index,:] - length_regions = len(seq_mut)*2 - - groupUnique, group_index = numpy.unique(group, return_index=True) - groupUnique = groupUnique[numpy.argsort(group_index)] - - lst_ab = [] - lst_ba = [] - for i in seq_mut: - lst_ab.append(seqDic_ab.get(i)) - lst_ba.append(seqDic_ba.get(i)) - - quant_ab = numpy.array(lst_ab) - quant_ba = numpy.array(lst_ba) - - quantAfterRegion = [] - - for i in groupUnique: - dataAB = quant_ab[numpy.where(group == i)[0]] - dataBA = quant_ba[numpy.where(group == i)[0]] - bigFamilies = numpy.where(dataAB > 20)[0] - dataAB[bigFamilies] = 22 - bigFamilies = numpy.where(dataBA > 20)[0] - dataBA[bigFamilies] = 22 - - quantAll = numpy.concatenate((dataAB, dataBA)) - quantAfterRegion.append(quantAll) - - maximumX = numpy.amax(numpy.concatenate(quantAfterRegion)) - minimumX = numpy.amin(numpy.concatenate(quantAfterRegion)) - - # PLOT - plt.rc('figure', figsize=(11.69, 8.27)) # A4 format - plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color - plt.rcParams['xtick.labelsize'] = 14 - plt.rcParams['ytick.labelsize'] = 14 - plt.rcParams['patch.edgecolor'] = "black" - fig = plt.figure() - plt.subplots_adjust(bottom=0.3) - - colors = ["#6E6E6E", "#0431B4", "#5FB404", "#B40431", "#F4FA58", "#DF7401", "#81DAF5"] - - col = [] - for i in range(0, len(groupUnique)): - col.append(colors[i]) - - counts = plt.hist(quantAfterRegion, bins=range(minimumX, maximumX + 1), stacked=False, label=groupUnique, - align="left", alpha=1, color=col, edgecolor="black", linewidth=1) - ticks = numpy.arange(minimumX - 1, maximumX, 1) - - ticks1 = map(str, ticks) - ticks1[len(ticks1) - 1] = ">20" - plt.xticks(numpy.array(ticks), ticks1) - count = numpy.bincount(map(int, quant_ab)) # original counts - - legend = "max. family size =\nabsolute frequency=\nrelative frequency=\n\ntotal nr. of reads=" - plt.text(0.15, 0.105, legend, size=11, transform=plt.gcf().transFigure) - - legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}" \ - .format(max(map(int, quant_ab)), count[len(count) - 1], float(count[len(count) - 1]) / sum(count), - sum(numpy.array(data_array[:, 0]).astype(int))) - plt.text(0.35, 0.105, legend, size=11, transform=plt.gcf().transFigure) - - count2 = numpy.bincount(map(int, quant_ba)) # original counts - - legend = "BA\n{}\n{}\n{:.5f}" \ - .format(max(map(int, quant_ba)), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2)) - plt.text(0.45, 0.15, legend, size=11, transform=plt.gcf().transFigure) - - plt.text(0.55, 0.22, "total nr. of tags=", size=11, transform=plt.gcf().transFigure) - plt.text(0.75, 0.22, "{:,} ({:,})".format(length_regions, length_regions/2), size=11, transform=plt.gcf().transFigure) - - # legend4 = '* The total numbers indicate the count of the ab and ba tags per region.\nAn equal sign ("=") is used in the column ba tags, if the counts and the region are identical to the ab tags.' - # plt.text(0.1, 0.02, legend4, size=11, transform=plt.gcf().transFigure) - - plt.text(0.75, 0.18, "total nr. of tags per region", size=11, transform=plt.gcf().transFigure) - #space = numpy.arange(0, len(groupUnique), 0.02) - s = 0 - index_array = 0 - for i, count in zip(groupUnique, quantAfterRegion): - index_of_current_region = numpy.where(group == i)[0] - plt.text(0.55, 0.14 - s, "{}=\n".format(i), size=11, transform=plt.gcf().transFigure) - if re.search('_(\d)+_(\d)+$', str(mut_array[0, 0])) is None: - nr_tags_ab = len(numpy.unique(mut_array[index_of_current_region, 1])) - else: - nr_tags_ab = len(mut_array[index_of_current_region, 1]) - plt.text(0.75, 0.14 - s, "{:,}\n".format(nr_tags_ab), size=11, transform=plt.gcf().transFigure) - s = s + 0.02 - - plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) - plt.xlabel("Family size", fontsize=14) - plt.ylabel("Absolute Frequency", fontsize=14) - plt.grid(b=True, which="major", color="#424242", linestyle=":") - plt.margins(0.01, None) - - pdf.savefig(fig, bbox_inch="tight") - plt.close() - - output_file.write("Dataset:{}{}\n".format(sep, name1)) - output_file.write("{}AB{}BA\n".format(sep, sep)) - output_file.write("max. family size:{}{}{}{}\n".format(sep, max(map(int, quant_ab)), sep, max(map(int, quant_ba)))) - output_file.write("absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1])) - output_file.write("relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep, float(count2[len(count2) - 1]) / sum(count2))) - output_file.write("total nr. of reads{}{}\n".format(sep, sum(numpy.array(data_array[:, 0]).astype(int)))) - output_file.write("total nr. of tags{}{} ({})\n".format(sep, length_regions, length_regions/2)) - - output_file.write("\n\nValues from family size distribution\n") - output_file.write("{}".format(sep)) - for i in groupUnique: - output_file.write("{}{}".format(i, sep)) - output_file.write("\n") - j = 0 - for fs in counts[1][0:len(counts[1]) - 1]: - if fs == 21: - fs = ">20" - else: - fs = "={}".format(fs) - output_file.write("FS{}{}".format(fs, sep)) - - if len(groupUnique) == 1: - output_file.write("{}{}".format(int(counts[0][j]), sep)) - else: - for n in range(len(groupUnique)): - output_file.write("{}{}".format(int(counts[0][n][j]), sep)) - - output_file.write("\n") - j += 1 - output_file.write("sum{}".format(sep)) - if len(groupUnique) == 1: - output_file.write("{}{}".format(int(sum(counts[0])), sep)) - else: - for i in counts[0]: - output_file.write("{}{}".format(int(sum(i)), sep)) - output_file.write("\n") - output_file.write("\n\nIn the plot, both family sizes of the ab and ba strands were used.\nWhereas the total numbers indicate only the count of the tags per region.\n") - output_file.write("\n\nRegion{}total nr. of tags per region\n".format(sep, sep)) - - for i, count in zip(groupUnique, quantAfterRegion): - output_file.write("{}{}{}\n".format(i,sep,len(count) / 2)) - print("Files successfully created!") - - -if __name__ == '__main__': - sys.exit(compare_read_families_refGenome(sys.argv)) +#!/usr/bin/env python + +# Family size distribution of tags which were aligned to the reference genome +# +# Author: Monika Heinzl & Gundula Povysil, Johannes-Kepler University Linz (Austria) +# Contact: monika.heinzl@edumail.at +# +# Takes at least one TABULAR file with tags before the alignment to the SSCS, +# a BAM file with tags of reads that overlap the regions of the reference genome and +# an optional BED file with chromosome, start and stop position of the regions as input. +# The program produces a plot which shows the distribution of family sizes of the tags from the input files and +# a tabular file with the data of the plot. + +# USAGE: python FSD_regions.py --inputFile filenameSSCS --inputName1 filenameSSCS +# --bamFile DCSbamFile --rangesFile BEDfile --output_tabular outptufile_name_tabular +# --output_pdf outputfile_name_pdf + +import argparse +import collections +import re +import sys + +import matplotlib.pyplot as plt +import numpy as np +import pysam +from matplotlib.backends.backend_pdf import PdfPages + +plt.switch_backend('agg') + + +def readFileReferenceFree(file, delim): + with open(file, 'r') as dest_f: + data_array = np.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype='string') + return(data_array) + + +def make_argparser(): + parser = argparse.ArgumentParser(description='Family Size Distribution of tags which were aligned to regions of the reference genome') + parser.add_argument('--inputFile', help='Tabular File with three columns: ab or ba, tag and family size.') + parser.add_argument('--inputName1') + parser.add_argument('--bamFile', help='BAM file with aligned reads.') + parser.add_argument('--rangesFile', default=None, help='BED file with chromosome, start and stop positions.') + parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf and tabular file.') + parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the pdf and tabular file.') + return parser + + +def compare_read_families_refGenome(argv): + parser = make_argparser() + args = parser.parse_args(argv[1:]) + + firstFile = args.inputFile + name1 = args.inputName1 + name1 = name1.split(".tabular")[0] + bamFile = args.bamFile + + rangesFile = args.rangesFile + title_file = args.output_pdf + title_file2 = args.output_tabular + sep = "\t" + + with open(title_file2, "w") as output_file, PdfPages(title_file) as pdf: + data_array = readFileReferenceFree(firstFile, "\t") + pysam.index(bamFile) + + bam = pysam.AlignmentFile(bamFile, "rb") + qname_dict = collections.OrderedDict() + + if rangesFile != str(None): + with open(rangesFile, 'r') as regs: + range_array = np.genfromtxt(regs, skip_header=0, delimiter='\t', comments='#', dtype='string') + + if range_array.ndim == 0: + print("Error: file has 0 lines") + exit(2) + + if range_array.ndim == 1: + chrList = range_array[0] + start_posList = range_array[1].astype(int) + stop_posList = range_array[2].astype(int) + chrList = [chrList.tolist()] + start_posList = [start_posList.tolist()] + stop_posList = [stop_posList.tolist()] + else: + chrList = range_array[:, 0] + start_posList = range_array[:, 1].astype(int) + stop_posList = range_array[:, 2].astype(int) + + if len(start_posList) != len(stop_posList): + print("start_positions and end_positions do not have the same length") + exit(3) + + chrList = np.array(chrList) + start_posList = np.array(start_posList).astype(int) + stop_posList = np.array(stop_posList).astype(int) + for chr, start_pos, stop_pos in zip(chrList, start_posList, stop_posList): + chr_start_stop = "{}_{}_{}".format(chr, start_pos, stop_pos) + qname_dict[chr_start_stop] = [] + for read in bam.fetch(chr.tobytes(), start_pos, stop_pos): + if not read.is_unmapped: + if re.search('_', read.query_name): + tags = re.split('_', read.query_name)[0] + else: + tags = read.query_name + qname_dict[chr_start_stop].append(tags) + + else: + for read in bam.fetch(): + if not read.is_unmapped: + if re.search(r'_', read.query_name): + tags = re.split('_', read.query_name)[0] + else: + tags = read.query_name + + if read.reference_name not in qname_dict.keys(): + qname_dict[read.reference_name] = [tags] + else: + qname_dict[read.reference_name].append(tags) + + seq = np.array(data_array[:, 1]) + tags = np.array(data_array[:, 2]) + quant = np.array(data_array[:, 0]).astype(int) + group = np.array(qname_dict.keys()) + + all_ab = seq[np.where(tags == "ab")[0]] + all_ba = seq[np.where(tags == "ba")[0]] + quant_ab = quant[np.where(tags == "ab")[0]] + quant_ba = quant[np.where(tags == "ba")[0]] + + seqDic_ab = dict(zip(all_ab, quant_ab)) + seqDic_ba = dict(zip(all_ba, quant_ba)) + + lst_ab = [] + lst_ba = [] + quantAfterRegion = [] + length_regions = 0 + for i in group: + lst_ab_r = [] + lst_ba_r = [] + seq_mut = qname_dict[i] + if rangesFile == str(None): + seq_mut, seqMut_index = np.unique(np.array(seq_mut), return_index=True) + length_regions = length_regions + len(seq_mut) * 2 + for r in seq_mut: + count_ab = seqDic_ab.get(r) + count_ba = seqDic_ba.get(r) + lst_ab_r.append(count_ab) + lst_ab.append(count_ab) + lst_ba_r.append(count_ba) + lst_ba.append(count_ba) + + dataAB = np.array(lst_ab_r) + dataBA = np.array(lst_ba_r) + bigFamilies = np.where(dataAB > 20)[0] + dataAB[bigFamilies] = 22 + bigFamilies = np.where(dataBA > 20)[0] + dataBA[bigFamilies] = 22 + + quantAll = np.concatenate((dataAB, dataBA)) + quantAfterRegion.append(quantAll) + + quant_ab = np.array(lst_ab) + quant_ba = np.array(lst_ba) + + maximumX = np.amax(np.concatenate(quantAfterRegion)) + minimumX = np.amin(np.concatenate(quantAfterRegion)) + + # PLOT + plt.rc('figure', figsize=(11.69, 8.27)) # A4 format + plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color + plt.rcParams['xtick.labelsize'] = 14 + plt.rcParams['ytick.labelsize'] = 14 + plt.rcParams['patch.edgecolor'] = "black" + fig = plt.figure() + plt.subplots_adjust(bottom=0.3) + + colors = ["#6E6E6E", "#0431B4", "#5FB404", "#B40431", "#F4FA58", "#DF7401", "#81DAF5"] + + col = [] + for i in range(0, len(group)): + col.append(colors[i]) + + counts = plt.hist(quantAfterRegion, bins=range(minimumX, maximumX + 1), stacked=False, label=group, + align="left", alpha=1, color=col, edgecolor="black", linewidth=1) + ticks = np.arange(minimumX - 1, maximumX, 1) + + ticks1 = map(str, ticks) + ticks1[len(ticks1) - 1] = ">20" + plt.xticks(np.array(ticks), ticks1) + count = np.bincount(map(int, quant_ab)) # original counts + + legend = "max. family size:\nabsolute frequency:\nrelative frequency:\n\ntotal nr. of reads:\n(before SSCS building)" + plt.text(0.15, 0.085, legend, size=11, transform=plt.gcf().transFigure) + + legend = "AB\n{}\n{}\n{:.5f}\n\n{:,}".format(max(map(int, quant_ab)), count[len(count) - 1], float(count[len(count) - 1]) / sum(count), sum(np.array(data_array[:, 0]).astype(int))) + plt.text(0.35, 0.105, legend, size=11, transform=plt.gcf().transFigure) + + count2 = np.bincount(map(int, quant_ba)) # original counts + + legend = "BA\n{}\n{}\n{:.5f}" \ + .format(max(map(int, quant_ba)), count2[len(count2) - 1], float(count2[len(count2) - 1]) / sum(count2)) + plt.text(0.45, 0.1475, legend, size=11, transform=plt.gcf().transFigure) + + plt.text(0.55, 0.2125, "total nr. of tags:", size=11, transform=plt.gcf().transFigure) + plt.text(0.8, 0.2125, "{:,} ({:,})".format(length_regions, length_regions / 2), size=11, + transform=plt.gcf().transFigure) + + legend4 = "* In the plot, both family sizes of the ab and ba strands were used.\nWhereas the total numbers indicate only the single count of the tags per region.\n" + plt.text(0.1, 0.01, legend4, size=11, transform=plt.gcf().transFigure) + + space = 0 + for i, count in zip(group, quantAfterRegion): + plt.text(0.55, 0.15 - space, "{}:\n".format(i), size=11, transform=plt.gcf().transFigure) + plt.text(0.8, 0.15 - space, "{:,}\n".format(len(count) / 2), size=11, transform=plt.gcf().transFigure) + space = space + 0.02 + + plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) + plt.xlabel("Family size", fontsize=14) + plt.ylabel("Absolute Frequency", fontsize=14) + plt.grid(b=True, which="major", color="#424242", linestyle=":") + plt.margins(0.01, None) + + pdf.savefig(fig, bbox_inch="tight") + plt.close() + + output_file.write("Dataset:{}{}\n".format(sep, name1)) + output_file.write("{}AB{}BA\n".format(sep, sep)) + output_file.write("max. family size:{}{}{}{}\n".format(sep, max(map(int, quant_ab)), sep, max(map(int, quant_ba)))) + output_file.write("absolute frequency:{}{}{}{}\n".format(sep, count[len(count) - 1], sep, count2[len(count2) - 1])) + output_file.write("relative frequency:{}{:.3f}{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count), sep, float(count2[len(count2) - 1]) / sum(count2))) + output_file.write("total nr. of reads{}{}\n".format(sep, sum(np.array(data_array[:, 0]).astype(int)))) + output_file.write("total nr. of tags{}{} ({})\n".format(sep, length_regions, length_regions / 2)) + output_file.write("\n\nValues from family size distribution\n") + output_file.write("{}".format(sep)) + for i in group: + output_file.write("{}{}".format(i, sep)) + output_file.write("\n") + + j = 0 + for fs in counts[1][0:len(counts[1]) - 1]: + if fs == 21: + fs = ">20" + else: + fs = "={}".format(fs) + output_file.write("FS{}{}".format(fs, sep)) + if len(group) == 1: + output_file.write("{}{}".format(int(counts[0][j]), sep)) + else: + for n in range(len(group)): + output_file.write("{}{}".format(int(counts[0][n][j]), sep)) + output_file.write("\n") + j += 1 + output_file.write("sum{}".format(sep)) + + if len(group) == 1: + output_file.write("{}{}".format(int(sum(counts[0])), sep)) + else: + for i in counts[0]: + output_file.write("{}{}".format(int(sum(i)), sep)) + output_file.write("\n") + output_file.write("\n\nIn the plot, both family sizes of the ab and ba strands were used.\nWhereas the total numbers indicate only the single count of the tags per region.\n") + output_file.write("Region{}total nr. of tags per region\n".format(sep)) + for i, count in zip(group, quantAfterRegion): + output_file.write("{}{}{}\n".format(i, sep, len(count) / 2)) + + print("Files successfully created!") + + +if __name__ == '__main__': + sys.exit(compare_read_families_refGenome(sys.argv))