0
|
1 ---
|
|
2 output: html_document
|
|
3 ---
|
|
4
|
|
5 ```{r setup, include=FALSE, warning=FALSE, message=FALSE}
|
|
6 knitr::opts_chunk$set(
|
|
7 echo = as.logical(opt$X_e),
|
|
8 error = TRUE
|
|
9 )
|
|
10 ```
|
|
11
|
|
12
|
|
13 # Visualization {.tabset}
|
|
14 ## Gene clustering
|
|
15
|
|
16 ```{r}
|
|
17 clustering_groups = strsplit(opt$X_M, ',')[[1]]
|
|
18
|
|
19 topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20)
|
|
20 mat <- assay(rld)[ topVarGenes, ]
|
|
21 mat <- mat - rowMeans(mat)
|
|
22 annotation_col <- as.data.frame(colData(rld)[, clustering_groups])
|
|
23 colnames(annotation_col) = clustering_groups
|
|
24 rownames(annotation_col) = colnames(mat)
|
|
25 pheatmap(mat, annotation_col = annotation_col)
|
|
26 ```
|
|
27
|
|
28 ## Sample-to-sample distance
|
|
29
|
|
30 ```{r}
|
|
31 sampleDistMatrix <- as.matrix( sampleDists )
|
|
32 colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
|
|
33 pheatmap(sampleDistMatrix,
|
|
34 clustering_distance_cols = sampleDists,
|
|
35 col = colors)
|
|
36 ```
|
|
37
|
|
38 ## PCA plot
|
|
39
|
|
40 ```{r}
|
|
41 plotPCA(rld, intgroup = clustering_groups)
|
|
42 ```
|
|
43
|
|
44 ## MDS plot {.tabset}
|
|
45
|
|
46 ### Data table
|
|
47 ```{r}
|
|
48 mds <- as.data.frame(colData(rld)) %>%
|
|
49 cbind(cmdscale(sampleDistMatrix))
|
|
50 knitr::kable(mds)
|
|
51 ```
|
|
52
|
|
53 ### Plot
|
|
54 ```{r}
|
|
55 ggplot(mds, aes(x = `1`, y = `2`, col = time)) +
|
|
56 geom_point(size = 3) + coord_fixed()
|
|
57 ```
|