Mercurial > repos > mingchen0919 > rmarkdown_fastqc_site
diff wgcna_construct_network.Rmd @ 6:2f4df2be0572 draft
planemo upload for repository https://github.com/statonlab/docker-GRReport/tree/master/my_tools/rmarkdown_wgcna commit d91f269e8bc09a488ed2e005122bbb4a521f44a0-dirty
author | mingchen0919 |
---|---|
date | Tue, 08 Aug 2017 12:35:11 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wgcna_construct_network.Rmd Tue Aug 08 12:35:11 2017 -0400 @@ -0,0 +1,178 @@ +--- +title: 'WGCNA: construct network' +output: + html_document: + number_sections: true + toc: true + theme: cosmo + highlight: tango +--- + +```{r setup, include=FALSE, warning=FALSE, message=FALSE} +knitr::opts_chunk$set( + echo = ECHO +) +``` + +# Import workspace + +This step imports workspace from the **WGCNA: preprocessing** step. + +```{r} +fcp = file.copy("PREPROCESSING_WORKSPACE", "deseq.RData") +load("deseq.RData") +``` + + +# Processing outliers {.tabset} + +## Before removing outliers + +```{r} +plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, + cex.axis = 1, cex.main = 1, cex = 0.5) +if(!is.na(HEIGHT_CUT)) { + # plot a line to show the cut + abline(h = HEIGHT_CUT, col = "red") + # determine cluster under the line + clust = cutreeStatic(sampleTree, cutHeight = HEIGHT_CUT, minSize = 10) + keepSamples = (clust==1) + expression_data = expression_data[keepSamples, ] +} +``` + +## After removing outliers + +```{r} +sampleTree = hclust(dist(expression_data), method = "average"); +plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", + cex.axis = 1, cex.main = 1, cex = 0.5) +``` + + +# Trait data {.tabeset} + +If trait data is provided, the first 100 rows from the data will be displayed here. A plot consisting of sample cluster dendrogram and trait heatmap will also be gerenated. + +## Trait data table + +```{r} +trait_data = data.frame() +if ("TRAIT_DATA" != 'None') { + trait_data = read.csv("TRAIT_DATA", header = TRUE, row.names = 1) + # form a data frame analogous to expression data that will hold the traits. + sample_names = rownames(expression_data) + trait_rows = match(sample_names, rownames(trait_data)) + trait_data = trait_data[trait_rows, ] + datatable(head(trait_data, 100), style="bootstrap", filter = 'top', + class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) +} +``` + +## Dendrogram and heatmap + +```{r fig.align='center', fig.width=8, fig.height=9} +if (nrow(trait_data) != 0) { + traitColors = numbers2colors(trait_data, signed = FALSE) + plotDendroAndColors(sampleTree, traitColors, + groupLabels = names(trait_data), + main = "Sample dendrogram and trait heatmap", + cex.dendroLabels = 0.5) +} +``` + + +# The thresholding power + +```{r} +powers = c(1:10, seq(12, 20, 2)) +soft_threshold = pickSoftThreshold(expression_data, powerVector = powers, verbose = 5) +``` + +```{r fig.align='center'} +par(mfrow=c(1,2)) +plot(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2], + xlab="Soft Threshold (power)", + ylab="Scale Free Topology Model Fit,signed R^2",type="n", + main = paste("Scale independence"), + cex.lab = 0.5); +text(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2], + labels=powers,cex=0.5,col="red"); + +# calculate soft threshold power +y = -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2] +r2_cutoff = 0.9 +for(i in 1:length(powers)) { + if(y[i] > r2_cutoff) { + soft_threshold_power = soft_threshold$fitIndices[,1][i] + r2_cutoff_new = y[i] + break + } + soft_threshold_power = soft_threshold$fitIndices[,1][length(powers)] +} +abline(h=r2_cutoff, col="red") +abline(v=soft_threshold_power, col="blue") +text(soft_threshold_power+1, r2_cutoff-0.1, + paste0('R^2 cutoff = ', round(r2_cutoff_new,2)), + cex = 0.5, col = "red") + +plot(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5], + xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", + main = paste("Mean connectivity"), + cex.lab = 0.5) +text(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5], labels=powers, cex=0.5,col="red") +par(mfrow=c(1,1)) +``` + + +# Construct network + +The gene network is constructed based on **soft threshold power = `r soft_threshold_power`** + +```{r} +gene_network = blockwiseModules(expression_data, power = soft_threshold_power, + TOMType = "unsigned", minModuleSize = 30, + reassignThreshold = 0, mergeCutHeight = 0.25, + numericLabels = TRUE, pamRespectsDendro = FALSE, + verbose = 3) +``` + + +# Gene modules {.tabset} + +## Idenfity gene modules + +```{r} +modules = table(gene_network$colors) +n_modules = length(modules) - 1 +module_size_upper = modules[2] +module_size_lower = modules[length(modules)] + +module_table = data.frame(model_label = c(0, 1:n_modules), + gene_size = as.vector(modules)) +datatable(t(module_table)) +``` + +The results above indicates that there are **`r n_modules` gene modules**, labeled 1 through `r length(n_modules)` in order of descending size. The largest module has **`r module_size_upper` genes**, and the smallest module has **`r module_size_lower` genes**. The label 0 is reserved for genes outside of all modules. + + +## Dendrogram and module plot + +```{r} +# Convert labels to colors for plotting +module_colors = labels2colors(gene_network$colors) +# Plot the dendrogram and the module colors underneath +plotDendroAndColors(gene_network$dendrograms[[1]], module_colors[gene_network$blockGenes[[1]]], + "Module colors", + dendroLabels = FALSE, hang = 0.03, + addGuide = TRUE, guideHang = 0.05) +``` + + +```{r echo=FALSE} +# save workspace +rm("opt") +save(list=ls(all.names = TRUE), file='CONSTRUCT_NETWORK_WORKSPACE') +``` + +