Mercurial > repos > mingchen0919 > rmarkdown_fastqc_site
view wgcna_construct_network.Rmd @ 6:2f4df2be0572 draft
planemo upload for repository https://github.com/statonlab/docker-GRReport/tree/master/my_tools/rmarkdown_wgcna commit d91f269e8bc09a488ed2e005122bbb4a521f44a0-dirty
author | mingchen0919 |
---|---|
date | Tue, 08 Aug 2017 12:35:11 -0400 |
parents | |
children |
line wrap: on
line source
--- title: 'WGCNA: construct network' output: html_document: number_sections: true toc: true theme: cosmo highlight: tango --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( echo = ECHO ) ``` # Import workspace This step imports workspace from the **WGCNA: preprocessing** step. ```{r} fcp = file.copy("PREPROCESSING_WORKSPACE", "deseq.RData") load("deseq.RData") ``` # Processing outliers {.tabset} ## Before removing outliers ```{r} plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1, cex.main = 1, cex = 0.5) if(!is.na(HEIGHT_CUT)) { # plot a line to show the cut abline(h = HEIGHT_CUT, col = "red") # determine cluster under the line clust = cutreeStatic(sampleTree, cutHeight = HEIGHT_CUT, minSize = 10) keepSamples = (clust==1) expression_data = expression_data[keepSamples, ] } ``` ## After removing outliers ```{r} sampleTree = hclust(dist(expression_data), method = "average"); plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.axis = 1, cex.main = 1, cex = 0.5) ``` # Trait data {.tabeset} If trait data is provided, the first 100 rows from the data will be displayed here. A plot consisting of sample cluster dendrogram and trait heatmap will also be gerenated. ## Trait data table ```{r} trait_data = data.frame() if ("TRAIT_DATA" != 'None') { trait_data = read.csv("TRAIT_DATA", header = TRUE, row.names = 1) # form a data frame analogous to expression data that will hold the traits. sample_names = rownames(expression_data) trait_rows = match(sample_names, rownames(trait_data)) trait_data = trait_data[trait_rows, ] datatable(head(trait_data, 100), style="bootstrap", filter = 'top', class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) } ``` ## Dendrogram and heatmap ```{r fig.align='center', fig.width=8, fig.height=9} if (nrow(trait_data) != 0) { traitColors = numbers2colors(trait_data, signed = FALSE) plotDendroAndColors(sampleTree, traitColors, groupLabels = names(trait_data), main = "Sample dendrogram and trait heatmap", cex.dendroLabels = 0.5) } ``` # The thresholding power ```{r} powers = c(1:10, seq(12, 20, 2)) soft_threshold = pickSoftThreshold(expression_data, powerVector = powers, verbose = 5) ``` ```{r fig.align='center'} par(mfrow=c(1,2)) plot(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2], xlab="Soft Threshold (power)", ylab="Scale Free Topology Model Fit,signed R^2",type="n", main = paste("Scale independence"), cex.lab = 0.5); text(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2], labels=powers,cex=0.5,col="red"); # calculate soft threshold power y = -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2] r2_cutoff = 0.9 for(i in 1:length(powers)) { if(y[i] > r2_cutoff) { soft_threshold_power = soft_threshold$fitIndices[,1][i] r2_cutoff_new = y[i] break } soft_threshold_power = soft_threshold$fitIndices[,1][length(powers)] } abline(h=r2_cutoff, col="red") abline(v=soft_threshold_power, col="blue") text(soft_threshold_power+1, r2_cutoff-0.1, paste0('R^2 cutoff = ', round(r2_cutoff_new,2)), cex = 0.5, col = "red") plot(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5], xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", main = paste("Mean connectivity"), cex.lab = 0.5) text(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5], labels=powers, cex=0.5,col="red") par(mfrow=c(1,1)) ``` # Construct network The gene network is constructed based on **soft threshold power = `r soft_threshold_power`** ```{r} gene_network = blockwiseModules(expression_data, power = soft_threshold_power, TOMType = "unsigned", minModuleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25, numericLabels = TRUE, pamRespectsDendro = FALSE, verbose = 3) ``` # Gene modules {.tabset} ## Idenfity gene modules ```{r} modules = table(gene_network$colors) n_modules = length(modules) - 1 module_size_upper = modules[2] module_size_lower = modules[length(modules)] module_table = data.frame(model_label = c(0, 1:n_modules), gene_size = as.vector(modules)) datatable(t(module_table)) ``` The results above indicates that there are **`r n_modules` gene modules**, labeled 1 through `r length(n_modules)` in order of descending size. The largest module has **`r module_size_upper` genes**, and the smallest module has **`r module_size_lower` genes**. The label 0 is reserved for genes outside of all modules. ## Dendrogram and module plot ```{r} # Convert labels to colors for plotting module_colors = labels2colors(gene_network$colors) # Plot the dendrogram and the module colors underneath plotDendroAndColors(gene_network$dendrograms[[1]], module_colors[gene_network$blockGenes[[1]]], "Module colors", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05) ``` ```{r echo=FALSE} # save workspace rm("opt") save(list=ls(all.names = TRUE), file='CONSTRUCT_NETWORK_WORKSPACE') ```