Mercurial > repos > mora-lab > gsar
view GSAR.R @ 1:8ff053661ae2 draft default tip
Uploaded
author | mora-lab |
---|---|
date | Thu, 20 May 2021 08:22:56 +0000 |
parents | |
children |
line wrap: on
line source
############################################################################### # title: Gene set analysis in R # author: Xiaowei # time: Mar.31 2021 ############################################################################### #================================================================= #how to pass parameters #================================================================= spec <- matrix(c("expr_file",'E', 1, 'character', 'Gene expression data which is an CSV file of expression values where rows correspond to genes and columns correspond to samples.', "geneSet_file", 'G', 1, 'character', 'Gene set', "design_file", 'D', 1, 'character', 'Design for the samples of expression data', "min_size", 'I',1, 'numeric','a numeric value indicating the minimum allowed gene set size. Default value is 10.', "max_size", 'A',1, 'numeric','a numeric value indicating the maximum allowed gene set size. Default value is 500.', "test_method", 'T',1, 'character', "a character parameter indicating which statistical method to use for testing the gene sets. Must be one of 'GSNCAtest', 'WWtest', 'KStest', 'MDtest', 'RKStest', 'RMDtest'.", "nperm_number", 'N', 1, 'numeric',"number of permutations used to estimate the null distribution of the test statistic. If not given, a default value 1000 is used.", "cor_method", 'M', 1, 'character',"a character string indicating which correlation coefficient is to be computed. Possible values are 'pearson' (default), 'spearman' and 'kendall'. Default value is 'pearson'.", "threshold_value", "V", 1, 'numeric', 'Threshold value for setting significant geneSet.', "GSAR_output_p_value", 'R', 1, 'character',"P-value table", "GSAR_output_plot", 'P', 1, 'character',"Plot genes relationships of significant pathway" ), byrow = TRUE, ncol = 5) if (!requireNamespace("getopt", quietly = TRUE)) install.packages("getopt") opt <- getopt::getopt(spec) #---------------- #整理参数 #---------------- # expr_file # geneSet_file # design_file if (is.null(opt$min_size)){min_size = 10}else{min_size = opt$min_size} if (is.null(opt$max_size)){max_size = 500}else{max_size = opt$max_size} if (is.null(opt$test_method)){test_method = "GSNCAtest"}else{test_method = opt$test_method} if (is.null(opt$nperm_number)){nperm_number = 1000}else{nperm_number = opt$nperm_number} if (is.null(opt$cor_method)){cor_method = "pearson"}else{cor_method = opt$cor_method} if (is.null(opt$threshold_value)){threshold_value = 0.05}else{threshold_value = opt$threshold_value} #================================================================ #run codes #================================================================ #--- load package ------------------ suppressPackageStartupMessages(library(GSAR)) suppressPackageStartupMessages(library(GSEABase)) options(stringsAsFactors = FALSE) #---input -------------------------- # expr data <- as.matrix(read.csv(opt$expr_file, row.names = 1)) # design design <- read.csv(opt$design_file, row.names = 1) group <- design$group label <- design$label # geneSet load(opt$geneSet_file) geneSetlist <- lapply(geneSet, geneIds) names(geneSetlist) <- names(geneSet) #-------GSAR ------------------------- # test.method <- c("GSNCAtest", "WWtest", "KStest", "MDtest", "RKStest", "RMDtest") # “GSNCAtest”, “WWtest”, “KStest”, “MDtest”, “RKStest”, “RMDtest” results <- TestGeneSets(object=data, group=group, geneSets=geneSetlist, min.size=min_size, max.size=max_size, test=test_method, nperm = nperm_number) #================================================================ #output #================================================================ # output p-value---------------------------------------------------- resutlts1 <- as.data.frame(t(as.data.frame(results))) colnames(resutlts1) = "P_value" resutlts1$geneSet <- rownames(resutlts1) resutlts1 <- resutlts1[,c("geneSet", "P_value")] resutlts1 <- resutlts1[order(resutlts1$P_value),] write.csv(resutlts1, file = opt$GSAR_output_p_value, row.names = FALSE) #------------------------------------------------------------------- #plot ------------------------------------------------------------- sig.paths <- names(results[results <= threshold_value]) group1 <- unique(design[design$group == 1, "label"]) group2 <- unique(design[design$group == 2, "label"]) allgenes <- rownames(data) pdf(file = opt$GSAR_output_plot, width = 10.92) if (length(sig.paths) > 0){ for (sig.path in sig.paths){ path.index <- allgenes %in% geneSetlist[[sig.path]] ## Plot MST2 for a pathway in two conditions plotMST2.pathway(object=data[path.index,], group=group, name=sig.path, legend.size=1.2, #leg.x=-1.2, leg.y=2, label.size=1, label.dist=0.8, cor.method=cor_method, group1.name = group1, group2.name = group2) rm(sig.path, path.index) } } dev.off()