0
|
1 <tool id="methylGSA" name="methylGSA" version="0.1.0" python_template_version="3.5">
|
|
2 <description>Gene Set Analysis for DNA Methylation data</description>
|
|
3
|
|
4 <requirements>
|
|
5 <requirement type="package" version="0.6.0">bioconductor-IlluminaHumanMethylationEPICanno.ilm10b4.hg19</requirement>
|
|
6 <requirement type="package" version="0.6.0">bioconductor-IlluminaHumanMethylation450kanno.ilmn12.hg19</requirement>
|
|
7 <requirement type="package" version="1.8.0">bioconductor-methylGSA</requirement>
|
|
8 <requirement type="package" version="1.20.3">r-getopt</requirement>
|
|
9 </requirements>
|
|
10
|
|
11 <command detect_errors="exit_code"><![CDATA[
|
|
12 Rscript '$__tool_directory__/methylGSA.R'
|
|
13 --data_file '$data_file'
|
|
14 --test_method '$method'
|
|
15 --array_type '$array_type'
|
|
16 --group '$Group'
|
|
17 --GS_list '$geneset'
|
|
18 --minsize '$minSize'
|
|
19 --maxsize '$maxSize'
|
|
20 --result '$gsa_result'
|
|
21
|
|
22 ]]></command>
|
|
23
|
|
24 <inputs>
|
|
25 <param name="data_file" type="data" format="txt" label="CpG IDs and their p-value" help="A text file with two columns: The CpG IDs and their p-values." />
|
|
26 <param name="array_type" type="select" label="Array_type" help="450K or EPIC." >
|
|
27 <option value="450K">450K</option>
|
|
28 <option value="EPIC">EPIC</option>
|
|
29 </param>
|
|
30 <param name="Group" type="select" label="Group" help="See help for more details.">
|
|
31 <option value="all">all</option>
|
|
32 <option value="body">body</option>
|
|
33 <option value="promoter1">promoter1</option>
|
|
34 <option value="promoter2">promoter2</option>
|
|
35 </param>
|
|
36 <param name="method" type="select" label="Test method" display="radio" help="See help for more details." >
|
|
37 <option value="methylglm">methylglm</option>
|
|
38 <option value="gometh">gometh</option>
|
|
39 <option value="RRA_ORA">RRA(ORA)</option>
|
|
40 <option value="RRA_GSEA">RRA(GSEA)</option>
|
|
41 </param>
|
|
42 <param name="geneset" type="select" label="Gene sets" help="Select gene sets to test." >
|
|
43 <option value="GO">Gene Ontology</option>
|
|
44 <option value="KEGG">KEGG</option>
|
|
45 <option value="Reactome">Reactome</option>
|
|
46 </param>
|
|
47
|
|
48 <param name="minSize" type="integer" label="Minimum gene set size" value="15" min="1" max="1000" help="Gene sets with less than this number of elements will not be included in the analysis." />
|
|
49 <param name="maxSize" type="integer" label="Maximum gene set size" value="500" min="1" max="1000" help="Gene sets with more than this number of elements will not be included in the analysis." />
|
|
50
|
|
51 </inputs>
|
|
52
|
|
53 <outputs>
|
|
54 <data name="gsa_result" format="csv" label="methylGSA_result" />
|
|
55 </outputs>
|
|
56
|
|
57 <tests>
|
|
58 <test>
|
|
59 <param name="data_file" value="cpg.csv" ftype="txt" />
|
|
60 <param name="array_type" value="450K"/>
|
|
61 <param name="Group" value="all" />
|
|
62 <param name="method" value="methylglm" />
|
|
63 <param name="geneset" value="GO" />
|
|
64 <param name="minSize" value="15" />
|
|
65 <param name="maxSize" value="500" />
|
|
66 <output name="gsa_result" file="methylGSA_result.csv" ftype="csv" />
|
|
67 </test>
|
|
68 </tests>
|
|
69
|
|
70 <help><![CDATA[
|
|
71
|
|
72 .. class:: infomark
|
|
73
|
|
74 **What it does**
|
|
75
|
|
76 **methylGSA** is a tool for gene set testing with length bias adjustment for DNA methylation data.
|
|
77 It allows users to identify enriched or over-represented gene sets or pathways from the Gene
|
|
78 Ontology, KEGG and Reactome databases.
|
|
79
|
|
80 -------
|
|
81
|
|
82 =========
|
|
83 **Input**
|
|
84 =========
|
|
85
|
|
86 **CpG IDs and their p-value**
|
|
87
|
|
88 Users are expected to upload a txt file with two columns: The fist column with the CpG IDs, and the second column with the p-values correspond to the CpGs. For example:
|
|
89
|
|
90 =========== ===========
|
|
91 cg13869341 0.307766
|
|
92 cg14008030 0.257672
|
|
93 cg12045430 0.552322
|
|
94 cg20826792 0.056383
|
|
95 cg00381604 0.468549
|
|
96 cg20253340 0.483770
|
|
97 cg21870274 0.812402
|
|
98 =========== ===========
|
|
99
|
|
100 Files should be no more than 100MB.
|
|
101
|
|
102 **array_type**
|
|
103
|
|
104 `450K`: Illumina 450 K Beadchip
|
|
105
|
|
106 `EPIC`: Illumina EPIC Beadchip
|
|
107
|
|
108 **Group**
|
|
109
|
|
110 **Group** defines the type of CpG to be considered by the `methylRRA` or `methylglm` functions. By default,
|
|
111 group is set to `all`, which means that all CpGs are considered regardless of their gene group.
|
|
112 If group is set to `body`, only CpGs on gene body will be considered. If group is `promoter1`
|
|
113 or `promoter2`, only CpGs on promoters will be considered.
|
|
114 Based on the annotation in IlluminaHumanMethylation450kanno.ilmn12.hg19
|
|
115 and IlluminaHumanMethylationEPICanno.ilm10b4.hg19, `body`, `promoter1` and `promoter2` are defined as:
|
|
116
|
|
117 * body: CpGs whose gene group correspond to “Body” or “1stExon”
|
|
118 * promoter1: CpGs whose gene group correspond to “TSS1500” or “TSS200”
|
|
119 * promoter2: CpGs whose gene group correspond to “TSS1500”, “TSS200”, “1stExon”, or “5’UTR”
|
|
120
|
|
121 **Test method**
|
|
122
|
|
123 * methylglm: Implement logistic regression adjusting for number of probes in enrichment analysis
|
|
124 * gometh: Gene ontology testing for Illumina methylation array data
|
|
125 * RRA(ORA): Enrichment analysis with ORA method after adjusting multiple p-values of each gene by Robust Rank Aggregation
|
|
126 * RRA(GSEA): Enrichment analysis with GSEA method after adjusting multiple p-values of each gene by Robust Rank Aggregation
|
|
127
|
|
128 **Gene sets tested**
|
|
129
|
|
130 * Gene Ontology: http://www.geneontology.org
|
|
131 * KEGG (Kyoto Encyclopedia of Genes and Genomes): https://www.genome.jp/kegg/
|
|
132 * Reactome: https://reactome.org
|
|
133
|
|
134 ==========
|
|
135 **Output**
|
|
136 ==========
|
|
137
|
|
138 **methylGSA_result**
|
|
139 This file is a csv file which contains gene set tests results.
|
|
140
|
|
141 ]]></help>
|
|
142
|
|
143 <citations>
|
|
144 <citation type="doi">10.1093/bioinformatics/bty892</citation>
|
|
145 </citations>
|
|
146
|
|
147 </tool>
|