Mercurial > repos > perssond > coreograph
comparison coreograph.xml @ 2:224e0cf4aaeb draft
planemo upload for repository https://github.com/ohsu-comp-bio/UNetCoreograph commit cb09eb9d2fa0feae993ae994b6beae05972c644b
author | goeckslab |
---|---|
date | Thu, 01 Sep 2022 22:43:42 +0000 |
parents | 57f1260ca94e |
children | ee92746d141a |
comparison
equal
deleted
inserted
replaced
1:57f1260ca94e | 2:224e0cf4aaeb |
---|---|
1 <tool id="unet_coreograph" name="UNetCoreograph" version="@VERSION@.3" profile="17.09"> | 1 <tool id="unet_coreograph" name="UNetCoreograph" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="19.01"> |
2 <description>Coreograph uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types.</description> | 2 <description>TMA core detection and dearraying</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 </macros> | 5 </macros> |
6 | 6 |
7 <expand macro="requirements"/> | 7 <expand macro="requirements"/> |
8 @VERSION_CMD@ | 8 <expand macro="version_cmd"/> |
9 | 9 |
10 <command detect_errors="exit_code"><![CDATA[ | 10 <command detect_errors="exit_code"><![CDATA[ |
11 #set $type_corrected = str($source_image)[:-3]+'ome.tif' | 11 #set $type_corrected = 'image.' + str($source_image.file_ext) |
12 ln -s $source_image `basename $type_corrected`; | 12 ln -s '$source_image' '$type_corrected' && |
13 | 13 |
14 @CMD_BEGIN@ | 14 @CMD_BEGIN@ |
15 | 15 |
16 python \$UNET_PATH | 16 python \$UNET_PATH |
17 --imagePath `basename $type_corrected` | 17 --imagePath '$type_corrected' |
18 --downsampleFactor $downsamplefactor | 18 --downsampleFactor $downsamplefactor |
19 --channel $channel | 19 --channel $channel |
20 --buffer $buffer | 20 --buffer $buffer |
21 --sensitivity $sensitivity | 21 --sensitivity $sensitivity |
22 | 22 $cluster |
23 ##if $usegrid | 23 $tissue |
24 ##--useGrid | 24 --outputPath '.' |
25 ##end if | |
26 | |
27 #if $cluster | |
28 --cluster | |
29 #end if | |
30 | |
31 #if $tissue | |
32 --tissue | |
33 #end if | |
34 | |
35 --outputPath .; | |
36 | 25 |
37 ]]></command> | 26 ]]></command> |
38 | 27 |
39 | 28 |
40 <inputs> | 29 <inputs> |
41 <param name="source_image" type="data" format="tiff" label="Registered TIFF"/> | 30 <param name="source_image" type="data" format="tiff,ome.tiff" label="Registered TIFF"/> |
42 <param name="downsamplefactor" type="integer" value="5" label="Down Sample Factor"/> | 31 <param name="downsamplefactor" type="integer" value="5" label="Down Sample Factor"/> |
43 <param name="channel" type="integer" value="0" label="Channel"/> | 32 <param name="channel" type="integer" value="0" label="Channel"/> |
44 <param name="buffer" type="float" value="2.0" label="Buffer"/> | 33 <param name="buffer" type="float" value="2.0" label="Buffer"/> |
45 <param name="sensitivity" type="float" value="0.3" label="Sensitivity"/> | 34 <param name="sensitivity" type="float" value="0.3" label="Sensitivity"/> |
46 <!--<param name="usegrid" type="boolean" label="Use Grid"/>--> | 35 <param name="cluster" type="boolean" truevalue="--cluster" falsevalue="" checked="false" label="Cluster"/> |
47 <param name="cluster" type="boolean" checked="false" label="Cluster"/> | 36 <param name="tissue" type="boolean" truevalue="--tissue" falsevalue="" checked="false" label="Tissue"/> |
48 <param name="tissue" type="boolean" checked="false" label="Tissue"/> | |
49 </inputs> | 37 </inputs> |
50 | 38 |
51 <outputs> | 39 <outputs> |
52 <collection name="tma_sections" type="list" label="${tool.name} on ${on_string}: Images"> | 40 <collection name="tma_sections" type="list" label="${tool.name} on ${on_string}: Images"> |
53 <discover_datasets pattern="(?P<designation>[0-9]+)\.tif" format="tiff" visible="false"/> | 41 <discover_datasets pattern="(?P<designation>[0-9]+)\.tif" format="tiff" visible="false"/> |
55 <collection name="masks" type="list" label="${tool.name} on ${on_string}: Masks"> | 43 <collection name="masks" type="list" label="${tool.name} on ${on_string}: Masks"> |
56 <discover_datasets pattern="(?P<designation>[0-9]+)_mask\.tif" directory="masks" format="tiff" visible="false"/> | 44 <discover_datasets pattern="(?P<designation>[0-9]+)_mask\.tif" directory="masks" format="tiff" visible="false"/> |
57 </collection> | 45 </collection> |
58 <data name="TMA_MAP" format="tiff" label="${tool.name} on ${on_string}: TMA Map" from_work_dir="TMA_MAP.tif"/> | 46 <data name="TMA_MAP" format="tiff" label="${tool.name} on ${on_string}: TMA Map" from_work_dir="TMA_MAP.tif"/> |
59 </outputs> | 47 </outputs> |
48 <tests> | |
49 <test> | |
50 <param name="source_image" value="coreograph_test.tiff" /> | |
51 <output_collection name="tma_sections" type="list"> | |
52 <element name="1" ftype="tiff"> | |
53 <assert_contents> | |
54 <has_size value="18000" delta="1000" /> | |
55 </assert_contents> | |
56 </element> | |
57 <element name="2" ftype="tiff"> | |
58 <assert_contents> | |
59 <has_size value="18000" delta="1000" /> | |
60 </assert_contents> | |
61 </element> | |
62 </output_collection> | |
63 <output_collection name="masks" type="list"> | |
64 <element name="1" ftype="tiff"> | |
65 <assert_contents> | |
66 <has_size value="345" delta="100" /> | |
67 </assert_contents> | |
68 </element> | |
69 <element name="2" ftype="tiff"> | |
70 <assert_contents> | |
71 <has_size value="345" delta="100" /> | |
72 </assert_contents> | |
73 </element> | |
74 </output_collection> | |
75 <output name="TMA_MAP" ftype="tiff"> | |
76 <assert_contents> | |
77 <has_size value="530" delta="100" /> | |
78 </assert_contents> | |
79 </output> | |
80 </test> | |
81 </tests> | |
60 <help><![CDATA[ | 82 <help><![CDATA[ |
83 ------------------- | |
84 UNet Coreograph | |
85 ------------------- | |
86 **Coreograph** uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types | |
87 | |
88 Training sets were acquired at 0.2micron/pixel resolution and downsampled 1/32 times to speed up performance. Once the center of each core has been identifed, active contours is used to generate a tissue mask of each core that can aid downstream single cell segmentation. A GPU is not required but will reduce computation time. | |
89 | |
90 **Inputs** | |
91 A tif or ome.tiff image multiple tissues, such as a tissue microarray. | |
92 | |
93 **Outputs** | |
94 Coreograph exports these files: | |
95 1. individual cores as tiff stacks with user-selectable channel ranges | |
96 2. binary tissue masks (saved in the 'mask' subfolder) | |
97 3. a TMA map showing the labels and outlines of each core for quality control purposes | |
61 ]]></help> | 98 ]]></help> |
62 <expand macro="citations" /> | 99 <expand macro="citations" /> |
63 </tool> | 100 </tool> |