Mercurial > repos > perssond > coreograph
diff coreograph.xml @ 2:224e0cf4aaeb draft
planemo upload for repository https://github.com/ohsu-comp-bio/UNetCoreograph commit cb09eb9d2fa0feae993ae994b6beae05972c644b
author | goeckslab |
---|---|
date | Thu, 01 Sep 2022 22:43:42 +0000 |
parents | 57f1260ca94e |
children | ee92746d141a |
line wrap: on
line diff
--- a/coreograph.xml Fri Mar 11 23:40:51 2022 +0000 +++ b/coreograph.xml Thu Sep 01 22:43:42 2022 +0000 @@ -1,51 +1,39 @@ -<tool id="unet_coreograph" name="UNetCoreograph" version="@VERSION@.3" profile="17.09"> - <description>Coreograph uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types.</description> +<tool id="unet_coreograph" name="UNetCoreograph" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="19.01"> + <description>TMA core detection and dearraying</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> - @VERSION_CMD@ + <expand macro="version_cmd"/> <command detect_errors="exit_code"><![CDATA[ - #set $type_corrected = str($source_image)[:-3]+'ome.tif' - ln -s $source_image `basename $type_corrected`; - + #set $type_corrected = 'image.' + str($source_image.file_ext) + ln -s '$source_image' '$type_corrected' && + @CMD_BEGIN@ python \$UNET_PATH - --imagePath `basename $type_corrected` + --imagePath '$type_corrected' --downsampleFactor $downsamplefactor --channel $channel --buffer $buffer --sensitivity $sensitivity - - ##if $usegrid - ##--useGrid - ##end if - - #if $cluster - --cluster - #end if - - #if $tissue - --tissue - #end if - - --outputPath .; + $cluster + $tissue + --outputPath '.' ]]></command> <inputs> - <param name="source_image" type="data" format="tiff" label="Registered TIFF"/> + <param name="source_image" type="data" format="tiff,ome.tiff" label="Registered TIFF"/> <param name="downsamplefactor" type="integer" value="5" label="Down Sample Factor"/> <param name="channel" type="integer" value="0" label="Channel"/> <param name="buffer" type="float" value="2.0" label="Buffer"/> <param name="sensitivity" type="float" value="0.3" label="Sensitivity"/> - <!--<param name="usegrid" type="boolean" label="Use Grid"/>--> - <param name="cluster" type="boolean" checked="false" label="Cluster"/> - <param name="tissue" type="boolean" checked="false" label="Tissue"/> + <param name="cluster" type="boolean" truevalue="--cluster" falsevalue="" checked="false" label="Cluster"/> + <param name="tissue" type="boolean" truevalue="--tissue" falsevalue="" checked="false" label="Tissue"/> </inputs> <outputs> @@ -57,7 +45,56 @@ </collection> <data name="TMA_MAP" format="tiff" label="${tool.name} on ${on_string}: TMA Map" from_work_dir="TMA_MAP.tif"/> </outputs> + <tests> + <test> + <param name="source_image" value="coreograph_test.tiff" /> + <output_collection name="tma_sections" type="list"> + <element name="1" ftype="tiff"> + <assert_contents> + <has_size value="18000" delta="1000" /> + </assert_contents> + </element> + <element name="2" ftype="tiff"> + <assert_contents> + <has_size value="18000" delta="1000" /> + </assert_contents> + </element> + </output_collection> + <output_collection name="masks" type="list"> + <element name="1" ftype="tiff"> + <assert_contents> + <has_size value="345" delta="100" /> + </assert_contents> + </element> + <element name="2" ftype="tiff"> + <assert_contents> + <has_size value="345" delta="100" /> + </assert_contents> + </element> + </output_collection> + <output name="TMA_MAP" ftype="tiff"> + <assert_contents> + <has_size value="530" delta="100" /> + </assert_contents> + </output> + </test> + </tests> <help><![CDATA[ +------------------- +UNet Coreograph +------------------- +**Coreograph** uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types + +Training sets were acquired at 0.2micron/pixel resolution and downsampled 1/32 times to speed up performance. Once the center of each core has been identifed, active contours is used to generate a tissue mask of each core that can aid downstream single cell segmentation. A GPU is not required but will reduce computation time. + +**Inputs** +A tif or ome.tiff image multiple tissues, such as a tissue microarray. + +**Outputs** +Coreograph exports these files: +1. individual cores as tiff stacks with user-selectable channel ranges +2. binary tissue masks (saved in the 'mask' subfolder) +3. a TMA map showing the labels and outlines of each core for quality control purposes ]]></help> <expand macro="citations" /> </tool>