Mercurial > repos > perssond > coreograph
comparison UNet2DtCycifTRAINCoreograph.py @ 1:57f1260ca94e draft
"planemo upload commit fec9dc76b3dd17b14b02c2f04be9d30f71eba1ae"
author | watsocam |
---|---|
date | Fri, 11 Mar 2022 23:40:51 +0000 |
parents | 99308601eaa6 |
children |
comparison
equal
deleted
inserted
replaced
0:99308601eaa6 | 1:57f1260ca94e |
---|---|
522 # UNet2D.train(imPath,logPath,modelPath,pmPath,500,100,40,True,20000,1,0) | 522 # UNet2D.train(imPath,logPath,modelPath,pmPath,500,100,40,True,20000,1,0) |
523 UNet2D.setup(128, 1, 2, 20, 2, 2, 3, 2, 0.03, 4, 32) | 523 UNet2D.setup(128, 1, 2, 20, 2, 2, 3, 2, 0.03, 4, 32) |
524 UNet2D.train(imPath, logPath, modelPath, pmPath, 2053, 513 , 641, True, 10, 1, 1) | 524 UNet2D.train(imPath, logPath, modelPath, pmPath, 2053, 513 , 641, True, 10, 1, 1) |
525 UNet2D.deploy(imPath,100,modelPath,pmPath,1,1) | 525 UNet2D.deploy(imPath,100,modelPath,pmPath,1,1) |
526 | 526 |
527 # I = im2double(tifread('/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/SinemSaka_NucleiSegmentation_SingleImageInferenceTest3.tif')) | 527 |
528 # UNet2D.singleImageInferenceSetup(modelPath,0) | 528 |
529 # J = UNet2D.singleImageInference(I,'accumulate',0) | 529 |
530 # UNet2D.singleImageInferenceCleanup() | |
531 # # imshowlist([I,J]) | |
532 # # sys.exit(0) | |
533 # # tifwrite(np.uint8(255*I),'/home/mc457/Workspace/I1.tif') | |
534 # # tifwrite(np.uint8(255*J),'/home/mc457/Workspace/I2.tif') | |
535 # K = np.zeros((2,I.shape[0],I.shape[1])) | |
536 # K[0,:,:] = I | |
537 # K[1,:,:] = J | |
538 # tifwrite(np.uint8(255*K),'/home/mc457/Workspace/Sinem_NucSeg.tif') | |
539 | |
540 # UNet2D.singleImageInferenceSetup(modelPath,0) | |
541 # imagePath = 'Y://sorger//data//RareCyte//Connor//Topacio_P2_AF//ashlar//C0078' | |
542 # | |
543 # fileList = glob.glob(imagePath + '//registration//C0078.ome.tif') | |
544 # print(fileList) | |
545 # for iFile in fileList: | |
546 # fileName = os.path.basename(iFile) | |
547 # fileNamePrefix = fileName.split(os.extsep, 1) | |
548 # I = im2double(tifffile.imread(iFile, key=0)) | |
549 # hsize = int((float(I.shape[0])*float(0.75))) | |
550 # vsize = int((float(I.shape[1])*float(0.75))) | |
551 # I = resize(I,(hsize,vsize)) | |
552 # J = UNet2D.singleImageInference(I,'accumulate',1) | |
553 # K = np.zeros((3,I.shape[0],I.shape[1])) | |
554 # K[2,:,:] = I | |
555 # K[0,:,:] = J | |
556 # J = UNet2D.singleImageInference(I, 'accumulate', 2) | |
557 # K[1, :, :] = J | |
558 # outputPath = imagePath + '//prob_maps' | |
559 # if not os.path.exists(outputPath): | |
560 # os.makedirs(outputPath) | |
561 # tifwrite(np.uint8(255*K),outputPath + '//' + fileNamePrefix[0] +'_NucSeg.tif') | |
562 # UNet2D.singleImageInferenceCleanup() | |
563 | |
564 | |
565 # ----- test 2 ----- | |
566 | |
567 # imPath = '/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/ClarenceYapp_NucleiSegmentation' | |
568 # UNet2D.setup(128,1,2,8,2,2,3,1,0.1,3,4) | |
569 # UNet2D.train(imPath,logPath,modelPath,pmPath,800,100,100,False,10,1) | |
570 # UNet2D.deploy(imPath,100,modelPath,pmPath,1) | |
571 | |
572 | |
573 # ----- test 3 ----- | |
574 | |
575 # imPath = '/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/CarmanLi_CellTypeSegmentation' | |
576 # # UNet2D.setup(256,1,2,8,2,2,3,1,0.1,3,4) | |
577 # # UNet2D.train(imPath,logPath,modelPath,pmPath,1400,100,164,False,10000,1) | |
578 # UNet2D.deploy(imPath,164,modelPath,pmPath,1) | |
579 | |
580 | |
581 # ----- test 4 ----- | |
582 | |
583 # imPath = '/home/cicconet/Downloads/TrainSet1' | |
584 # UNet2D.setup(64,1,2,8,2,2,3,1,0.1,3,4) | |
585 # UNet2D.train(imPath,logPath,modelPath,pmPath,200,8,8,False,2000,1,0) | |
586 # # UNet2D.deploy(imPath,164,modelPath,pmPath,1) |