Mercurial > repos > perssond > coreograph
view UNet2DtCycifTRAINCoreograph.py @ 1:57f1260ca94e draft
"planemo upload commit fec9dc76b3dd17b14b02c2f04be9d30f71eba1ae"
author | watsocam |
---|---|
date | Fri, 11 Mar 2022 23:40:51 +0000 |
parents | 99308601eaa6 |
children |
line wrap: on
line source
import numpy as np from scipy import misc import tensorflow as tf import shutil import scipy.io as sio import os,fnmatch,PIL,glob import sys sys.path.insert(0, 'C:\\Users\\Public\\Documents\\ImageScience') from toolbox.imtools import * from toolbox.ftools import * from toolbox.PartitionOfImage import PI2D def concat3(lst): return tf.concat(lst,3) class UNet2D: hp = None # hyper-parameters nn = None # network tfTraining = None # if training or not (to handle batch norm) tfData = None # data placeholder Session = None DatasetMean = 0 DatasetStDev = 0 def setupWithHP(hp): UNet2D.setup(hp['imSize'], hp['nChannels'], hp['nClasses'], hp['nOut0'], hp['featMapsFact'], hp['downSampFact'], hp['ks'], hp['nExtraConvs'], hp['stdDev0'], hp['nLayers'], hp['batchSize']) def setup(imSize,nChannels,nClasses,nOut0,featMapsFact,downSampFact,kernelSize,nExtraConvs,stdDev0,nDownSampLayers,batchSize): UNet2D.hp = {'imSize':imSize, 'nClasses':nClasses, 'nChannels':nChannels, 'nExtraConvs':nExtraConvs, 'nLayers':nDownSampLayers, 'featMapsFact':featMapsFact, 'downSampFact':downSampFact, 'ks':kernelSize, 'nOut0':nOut0, 'stdDev0':stdDev0, 'batchSize':batchSize} nOutX = [UNet2D.hp['nChannels'],UNet2D.hp['nOut0']] dsfX = [] for i in range(UNet2D.hp['nLayers']): nOutX.append(nOutX[-1]*UNet2D.hp['featMapsFact']) dsfX.append(UNet2D.hp['downSampFact']) # -------------------------------------------------- # downsampling layer # -------------------------------------------------- with tf.name_scope('placeholders'): UNet2D.tfTraining = tf.placeholder(tf.bool, name='training') UNet2D.tfData = tf.placeholder("float", shape=[None,UNet2D.hp['imSize'],UNet2D.hp['imSize'],UNet2D.hp['nChannels']],name='data') def down_samp_layer(data,index): with tf.name_scope('ld%d' % index): ldXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index], nOutX[index+1]], stddev=stdDev0),name='kernel1') ldXWeightsExtra = [] for i in range(nExtraConvs): ldXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernelExtra%d' % i)) c00 = tf.nn.conv2d(data, ldXWeights1, strides=[1, 1, 1, 1], padding='SAME') for i in range(nExtraConvs): c00 = tf.nn.conv2d(tf.nn.relu(c00), ldXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME') ldXWeightsShortcut = tf.Variable(tf.truncated_normal([1, 1, nOutX[index], nOutX[index+1]], stddev=stdDev0),name='shortcutWeights') shortcut = tf.nn.conv2d(data, ldXWeightsShortcut, strides=[1, 1, 1, 1], padding='SAME') bn = tf.layers.batch_normalization(tf.nn.relu(c00+shortcut), training=UNet2D.tfTraining) return tf.nn.max_pool(bn, ksize=[1, dsfX[index], dsfX[index], 1], strides=[1, dsfX[index], dsfX[index], 1], padding='SAME',name='maxpool') # -------------------------------------------------- # bottom layer # -------------------------------------------------- with tf.name_scope('lb'): lbWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[UNet2D.hp['nLayers']], nOutX[UNet2D.hp['nLayers']+1]], stddev=stdDev0),name='kernel1') def lb(hidden): return tf.nn.relu(tf.nn.conv2d(hidden, lbWeights1, strides=[1, 1, 1, 1], padding='SAME'),name='conv') # -------------------------------------------------- # downsampling # -------------------------------------------------- with tf.name_scope('downsampling'): dsX = [] dsX.append(UNet2D.tfData) for i in range(UNet2D.hp['nLayers']): dsX.append(down_samp_layer(dsX[i],i)) b = lb(dsX[UNet2D.hp['nLayers']]) # -------------------------------------------------- # upsampling layer # -------------------------------------------------- def up_samp_layer(data,index): with tf.name_scope('lu%d' % index): luXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+2]], stddev=stdDev0),name='kernel1') luXWeights2 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index]+nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2') luXWeightsExtra = [] for i in range(nExtraConvs): luXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2Extra%d' % i)) outSize = UNet2D.hp['imSize'] for i in range(index): outSize /= dsfX[i] outSize = int(outSize) outputShape = [UNet2D.hp['batchSize'],outSize,outSize,nOutX[index+1]] us = tf.nn.relu(tf.nn.conv2d_transpose(data, luXWeights1, outputShape, strides=[1, dsfX[index], dsfX[index], 1], padding='SAME'),name='conv1') cc = concat3([dsX[index],us]) cv = tf.nn.relu(tf.nn.conv2d(cc, luXWeights2, strides=[1, 1, 1, 1], padding='SAME'),name='conv2') for i in range(nExtraConvs): cv = tf.nn.relu(tf.nn.conv2d(cv, luXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME'),name='conv2Extra%d' % i) return cv # -------------------------------------------------- # final (top) layer # -------------------------------------------------- with tf.name_scope('lt'): ltWeights1 = tf.Variable(tf.truncated_normal([1, 1, nOutX[1], nClasses], stddev=stdDev0),name='kernel') def lt(hidden): return tf.nn.conv2d(hidden, ltWeights1, strides=[1, 1, 1, 1], padding='SAME',name='conv') # -------------------------------------------------- # upsampling # -------------------------------------------------- with tf.name_scope('upsampling'): usX = [] usX.append(b) for i in range(UNet2D.hp['nLayers']): usX.append(up_samp_layer(usX[i],UNet2D.hp['nLayers']-1-i)) t = lt(usX[UNet2D.hp['nLayers']]) sm = tf.nn.softmax(t,-1) UNet2D.nn = sm def train(imPath,logPath,modelPath,pmPath,nTrain,nValid,nTest,restoreVariables,nSteps,gpuIndex,testPMIndex): os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex outLogPath = logPath trainWriterPath = pathjoin(logPath,'Train') validWriterPath = pathjoin(logPath,'Valid') outModelPath = pathjoin(modelPath,'model.ckpt') outPMPath = pmPath batchSize = UNet2D.hp['batchSize'] imSize = UNet2D.hp['imSize'] nChannels = UNet2D.hp['nChannels'] nClasses = UNet2D.hp['nClasses'] # -------------------------------------------------- # data # -------------------------------------------------- Train = np.zeros((nTrain,imSize,imSize,nChannels)) Valid = np.zeros((nValid,imSize,imSize,nChannels)) Test = np.zeros((nTest,imSize,imSize,nChannels)) LTrain = np.zeros((nTrain,imSize,imSize,nClasses)) LValid = np.zeros((nValid,imSize,imSize,nClasses)) LTest = np.zeros((nTest,imSize,imSize,nClasses)) print('loading data, computing mean / st dev') if not os.path.exists(modelPath): os.makedirs(modelPath) if restoreVariables: datasetMean = loadData(pathjoin(modelPath,'datasetMean.data')) datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data')) else: datasetMean = 0.09 datasetStDev = 0.09 #for iSample in range(nTrain+nValid+nTest): # I = im2double(tifread('%s/I%05d_Img.tif' % (imPath,iSample))) # datasetMean += np.mean(I) # datasetStDev += np.std(I) #datasetMean /= (nTrain+nValid+nTest) #datasetStDev /= (nTrain+nValid+nTest) saveData(datasetMean, pathjoin(modelPath,'datasetMean.data')) saveData(datasetStDev, pathjoin(modelPath,'datasetStDev.data')) perm = np.arange(nTrain+nValid+nTest) np.random.shuffle(perm) for iSample in range(0, nTrain): path = '%s/I%05d_Img.tif' % (imPath,perm[iSample]) im = im2double(tifread(path)) #im = im[0, 0, 0, :, :] Train[iSample,:,:,0] = (im-datasetMean)/datasetStDev path = '%s/I%05d_Ant.tif' % (imPath,perm[iSample]) im = tifread(path) for i in range(nClasses): LTrain[iSample,:,:,i] = (im == i+1) for iSample in range(0, nValid): path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+iSample]) im = im2double(tifread(path)) #im = im[0, 0, 0, :, :] Valid[iSample,:,:,0] = (im-datasetMean)/datasetStDev path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+iSample]) im = tifread(path) for i in range(nClasses): LValid[iSample,:,:,i] = (im == i+1) for iSample in range(0, nTest): path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+nValid+iSample]) im = im2double(tifread(path)) #im = im[0, 0, 0, :, :] Test[iSample,:,:,0] = (im-datasetMean)/datasetStDev path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+nValid+iSample]) im = tifread(path) for i in range(nClasses): LTest[iSample,:,:,i] = (im == i+1) # -------------------------------------------------- # optimization # -------------------------------------------------- tfLabels = tf.placeholder("float", shape=[None,imSize,imSize,nClasses],name='labels') globalStep = tf.Variable(0,trainable=False) learningRate0 = 0.05 decaySteps = 1000 decayRate = 0.95 learningRate = tf.train.exponential_decay(learningRate0,globalStep,decaySteps,decayRate,staircase=True) with tf.name_scope('optim'): loss = tf.reduce_mean(-tf.reduce_sum(tf.multiply(tfLabels,tf.log(UNet2D.nn)),3)) updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # optimizer = tf.train.MomentumOptimizer(1e-3,0.9) optimizer = tf.train.MomentumOptimizer(learningRate,0.9) # optimizer = tf.train.GradientDescentOptimizer(learningRate) with tf.control_dependencies(updateOps): optOp = optimizer.minimize(loss,global_step=globalStep) with tf.name_scope('eval'): error = [] for iClass in range(nClasses): labels0 = tf.reshape(tf.to_int32(tf.slice(tfLabels,[0,0,0,iClass],[-1,-1,-1,1])),[batchSize,imSize,imSize]) predict0 = tf.reshape(tf.to_int32(tf.equal(tf.argmax(UNet2D.nn,3),iClass)),[batchSize,imSize,imSize]) correct = tf.multiply(labels0,predict0) nCorrect0 = tf.reduce_sum(correct) nLabels0 = tf.reduce_sum(labels0) error.append(1-tf.to_float(nCorrect0)/tf.to_float(nLabels0)) errors = tf.tuple(error) # -------------------------------------------------- # inspection # -------------------------------------------------- with tf.name_scope('scalars'): tf.summary.scalar('avg_cross_entropy', loss) for iClass in range(nClasses): tf.summary.scalar('avg_pixel_error_%d' % iClass, error[iClass]) tf.summary.scalar('learning_rate', learningRate) with tf.name_scope('images'): #split0 = tf.slice(UNet2D.nn,[0,0,0,0],[-1,-1,-1,1]) split0 = tf.slice(UNet2D.nn,[0,0,0,1],[-1,-1,-1,1]) split1 = tf.slice(tfLabels, [0, 0, 0, 0], [-1, -1, -1, 1]) if nClasses > 2: split2 = tf.slice(UNet2D.nn,[0,0,0,2],[-1,-1,-1,1]) tf.summary.image('pm0',split0) tf.summary.image('pm1',split1) if nClasses > 2: tf.summary.image('pm2',split2) merged = tf.summary.merge_all() # -------------------------------------------------- # session # -------------------------------------------------- saver = tf.train.Saver() sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU if os.path.exists(outLogPath): shutil.rmtree(outLogPath) trainWriter = tf.summary.FileWriter(trainWriterPath, sess.graph) validWriter = tf.summary.FileWriter(validWriterPath, sess.graph) if restoreVariables: saver.restore(sess, outModelPath) print("Model restored.") else: sess.run(tf.global_variables_initializer()) # -------------------------------------------------- # train # -------------------------------------------------- batchData = np.zeros((batchSize,imSize,imSize,nChannels)) batchLabels = np.zeros((batchSize,imSize,imSize,nClasses)) for i in range(nSteps): # train perm = np.arange(nTrain) np.random.shuffle(perm) for j in range(batchSize): batchData[j,:,:,:] = Train[perm[j],:,:,:] batchLabels[j,:,:,:] = LTrain[perm[j],:,:,:] summary,_ = sess.run([merged,optOp],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 1}) trainWriter.add_summary(summary, i) # validation perm = np.arange(nValid) np.random.shuffle(perm) for j in range(batchSize): batchData[j,:,:,:] = Valid[perm[j],:,:,:] batchLabels[j,:,:,:] = LValid[perm[j],:,:,:] summary, es = sess.run([merged, errors],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0}) validWriter.add_summary(summary, i) e = np.mean(es) print('step %05d, e: %f' % (i,e)) if i == 0: if restoreVariables: lowestError = e else: lowestError = np.inf if np.mod(i,100) == 0 and e < lowestError: lowestError = e print("Model saved in file: %s" % saver.save(sess, outModelPath)) # -------------------------------------------------- # test # -------------------------------------------------- if not os.path.exists(outPMPath): os.makedirs(outPMPath) for i in range(nTest): j = np.mod(i,batchSize) batchData[j,:,:,:] = Test[i,:,:,:] batchLabels[j,:,:,:] = LTest[i,:,:,:] if j == batchSize-1 or i == nTest-1: output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0}) for k in range(j+1): pm = output[k,:,:,testPMIndex] gt = batchLabels[k,:,:,testPMIndex] im = np.sqrt(normalize(batchData[k,:,:,0])) imwrite(np.uint8(255*np.concatenate((im,np.concatenate((pm,gt),axis=1)),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1)) # -------------------------------------------------- # save hyper-parameters, clean-up # -------------------------------------------------- saveData(UNet2D.hp,pathjoin(modelPath,'hp.data')) trainWriter.close() validWriter.close() sess.close() def deploy(imPath,nImages,modelPath,pmPath,gpuIndex,pmIndex): os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex variablesPath = pathjoin(modelPath,'model.ckpt') outPMPath = pmPath hp = loadData(pathjoin(modelPath,'hp.data')) UNet2D.setupWithHP(hp) batchSize = UNet2D.hp['batchSize'] imSize = UNet2D.hp['imSize'] nChannels = UNet2D.hp['nChannels'] nClasses = UNet2D.hp['nClasses'] # -------------------------------------------------- # data # -------------------------------------------------- Data = np.zeros((nImages,imSize,imSize,nChannels)) datasetMean = loadData(pathjoin(modelPath,'datasetMean.data')) datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data')) for iSample in range(0, nImages): path = '%s/I%05d_Img.tif' % (imPath,iSample) im = im2double(tifread(path)) #im = im[0, 0, 0, :, :] Data[iSample,:,:,0] = (im-datasetMean)/datasetStDev # -------------------------------------------------- # session # -------------------------------------------------- saver = tf.train.Saver() sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU saver.restore(sess, variablesPath) print("Model restored.") # -------------------------------------------------- # deploy # -------------------------------------------------- batchData = np.zeros((batchSize,imSize,imSize,nChannels)) if not os.path.exists(outPMPath): os.makedirs(outPMPath) for i in range(nImages): print(i,nImages) j = np.mod(i,batchSize) batchData[j,:,:,:] = Data[i,:,:,:] if j == batchSize-1 or i == nImages-1: output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0}) for k in range(j+1): pm = output[k,:,:,pmIndex] im = np.sqrt(normalize(batchData[k,:,:,0])) # imwrite(np.uint8(255*np.concatenate((im,pm),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1)) imwrite(np.uint8(255*im),'%s/I%05d_Im.png' % (outPMPath,i-j+k+1)) imwrite(np.uint8(255*pm),'%s/I%05d_PM.png' % (outPMPath,i-j+k+1)) # -------------------------------------------------- # clean-up # -------------------------------------------------- sess.close() def singleImageInferenceSetup(modelPath,gpuIndex): os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex variablesPath = pathjoin(modelPath,'model.ckpt') hp = loadData(pathjoin(modelPath,'hp.data')) UNet2D.setupWithHP(hp) UNet2D.DatasetMean = loadData(pathjoin(modelPath,'datasetMean.data')) UNet2D.DatasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data')) print(UNet2D.DatasetMean) print(UNet2D.DatasetStDev) # -------------------------------------------------- # session # -------------------------------------------------- saver = tf.train.Saver() UNet2D.Session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU saver.restore(UNet2D.Session, variablesPath) print("Model restored.") def singleImageInferenceCleanup(): UNet2D.Session.close() def singleImageInference(image,mode,pmIndex): print('Inference...') batchSize = UNet2D.hp['batchSize'] imSize = UNet2D.hp['imSize'] nChannels = UNet2D.hp['nChannels'] PI2D.setup(image,imSize,int(imSize/8),mode) PI2D.createOutput(nChannels) batchData = np.zeros((batchSize,imSize,imSize,nChannels)) for i in range(PI2D.NumPatches): j = np.mod(i,batchSize) batchData[j,:,:,0] = (PI2D.getPatch(i)-UNet2D.DatasetMean)/UNet2D.DatasetStDev if j == batchSize-1 or i == PI2D.NumPatches-1: output = UNet2D.Session.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0}) for k in range(j+1): pm = output[k,:,:,pmIndex] PI2D.patchOutput(i-j+k,pm) # PI2D.patchOutput(i-j+k,normalize(imgradmag(PI2D.getPatch(i-j+k),1))) return PI2D.getValidOutput() if __name__ == '__main__': logPath = 'D:\\LSP\\UNet\\Coreograph\\TFLogs' modelPath = 'D:\\LSP\\Coreograph\\model-4layersMaskAug20New' pmPath = 'D:\\LSP\\UNet\\Coreograph\\TFProbMaps' # ----- test 1 ----- # imPath = 'D:\\LSP\\UNet\\tonsil20x1bin1chan\\tonsilAnnotations' imPath = 'Z:/IDAC/Clarence/LSP/CyCIF/TMA/training data custom unaveraged' # UNet2D.setup(128,1,2,8,2,2,3,1,0.1,2,8) # UNet2D.train(imPath,logPath,modelPath,pmPath,500,100,40,True,20000,1,0) UNet2D.setup(128, 1, 2, 20, 2, 2, 3, 2, 0.03, 4, 32) UNet2D.train(imPath, logPath, modelPath, pmPath, 2053, 513 , 641, True, 10, 1, 1) UNet2D.deploy(imPath,100,modelPath,pmPath,1,1)