comparison UNet2DtCycifTRAINCoreograph.py @ 0:99308601eaa6 draft

"planemo upload for repository https://github.com/ohsu-comp-bio/UNetCoreograph commit fb90660a1805b3f68fcff80d525b5459c3f7dfd6-dirty"
author perssond
date Wed, 19 May 2021 21:34:38 +0000
parents
children 57f1260ca94e
comparison
equal deleted inserted replaced
-1:000000000000 0:99308601eaa6
1 import numpy as np
2 from scipy import misc
3 import tensorflow as tf
4 import shutil
5 import scipy.io as sio
6 import os,fnmatch,PIL,glob
7
8 import sys
9 sys.path.insert(0, 'C:\\Users\\Public\\Documents\\ImageScience')
10 from toolbox.imtools import *
11 from toolbox.ftools import *
12 from toolbox.PartitionOfImage import PI2D
13
14
15 def concat3(lst):
16 return tf.concat(lst,3)
17
18 class UNet2D:
19 hp = None # hyper-parameters
20 nn = None # network
21 tfTraining = None # if training or not (to handle batch norm)
22 tfData = None # data placeholder
23 Session = None
24 DatasetMean = 0
25 DatasetStDev = 0
26
27 def setupWithHP(hp):
28 UNet2D.setup(hp['imSize'],
29 hp['nChannels'],
30 hp['nClasses'],
31 hp['nOut0'],
32 hp['featMapsFact'],
33 hp['downSampFact'],
34 hp['ks'],
35 hp['nExtraConvs'],
36 hp['stdDev0'],
37 hp['nLayers'],
38 hp['batchSize'])
39
40 def setup(imSize,nChannels,nClasses,nOut0,featMapsFact,downSampFact,kernelSize,nExtraConvs,stdDev0,nDownSampLayers,batchSize):
41 UNet2D.hp = {'imSize':imSize,
42 'nClasses':nClasses,
43 'nChannels':nChannels,
44 'nExtraConvs':nExtraConvs,
45 'nLayers':nDownSampLayers,
46 'featMapsFact':featMapsFact,
47 'downSampFact':downSampFact,
48 'ks':kernelSize,
49 'nOut0':nOut0,
50 'stdDev0':stdDev0,
51 'batchSize':batchSize}
52
53 nOutX = [UNet2D.hp['nChannels'],UNet2D.hp['nOut0']]
54 dsfX = []
55 for i in range(UNet2D.hp['nLayers']):
56 nOutX.append(nOutX[-1]*UNet2D.hp['featMapsFact'])
57 dsfX.append(UNet2D.hp['downSampFact'])
58
59
60 # --------------------------------------------------
61 # downsampling layer
62 # --------------------------------------------------
63
64 with tf.name_scope('placeholders'):
65 UNet2D.tfTraining = tf.placeholder(tf.bool, name='training')
66 UNet2D.tfData = tf.placeholder("float", shape=[None,UNet2D.hp['imSize'],UNet2D.hp['imSize'],UNet2D.hp['nChannels']],name='data')
67
68 def down_samp_layer(data,index):
69 with tf.name_scope('ld%d' % index):
70 ldXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index], nOutX[index+1]], stddev=stdDev0),name='kernel1')
71 ldXWeightsExtra = []
72 for i in range(nExtraConvs):
73 ldXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernelExtra%d' % i))
74
75 c00 = tf.nn.conv2d(data, ldXWeights1, strides=[1, 1, 1, 1], padding='SAME')
76 for i in range(nExtraConvs):
77 c00 = tf.nn.conv2d(tf.nn.relu(c00), ldXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME')
78
79 ldXWeightsShortcut = tf.Variable(tf.truncated_normal([1, 1, nOutX[index], nOutX[index+1]], stddev=stdDev0),name='shortcutWeights')
80 shortcut = tf.nn.conv2d(data, ldXWeightsShortcut, strides=[1, 1, 1, 1], padding='SAME')
81
82 bn = tf.layers.batch_normalization(tf.nn.relu(c00+shortcut), training=UNet2D.tfTraining)
83
84 return tf.nn.max_pool(bn, ksize=[1, dsfX[index], dsfX[index], 1], strides=[1, dsfX[index], dsfX[index], 1], padding='SAME',name='maxpool')
85
86 # --------------------------------------------------
87 # bottom layer
88 # --------------------------------------------------
89
90 with tf.name_scope('lb'):
91 lbWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[UNet2D.hp['nLayers']], nOutX[UNet2D.hp['nLayers']+1]], stddev=stdDev0),name='kernel1')
92 def lb(hidden):
93 return tf.nn.relu(tf.nn.conv2d(hidden, lbWeights1, strides=[1, 1, 1, 1], padding='SAME'),name='conv')
94
95 # --------------------------------------------------
96 # downsampling
97 # --------------------------------------------------
98
99 with tf.name_scope('downsampling'):
100 dsX = []
101 dsX.append(UNet2D.tfData)
102
103 for i in range(UNet2D.hp['nLayers']):
104 dsX.append(down_samp_layer(dsX[i],i))
105
106 b = lb(dsX[UNet2D.hp['nLayers']])
107
108 # --------------------------------------------------
109 # upsampling layer
110 # --------------------------------------------------
111
112 def up_samp_layer(data,index):
113 with tf.name_scope('lu%d' % index):
114 luXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+2]], stddev=stdDev0),name='kernel1')
115 luXWeights2 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index]+nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2')
116 luXWeightsExtra = []
117 for i in range(nExtraConvs):
118 luXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2Extra%d' % i))
119
120 outSize = UNet2D.hp['imSize']
121 for i in range(index):
122 outSize /= dsfX[i]
123 outSize = int(outSize)
124
125 outputShape = [UNet2D.hp['batchSize'],outSize,outSize,nOutX[index+1]]
126 us = tf.nn.relu(tf.nn.conv2d_transpose(data, luXWeights1, outputShape, strides=[1, dsfX[index], dsfX[index], 1], padding='SAME'),name='conv1')
127 cc = concat3([dsX[index],us])
128 cv = tf.nn.relu(tf.nn.conv2d(cc, luXWeights2, strides=[1, 1, 1, 1], padding='SAME'),name='conv2')
129 for i in range(nExtraConvs):
130 cv = tf.nn.relu(tf.nn.conv2d(cv, luXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME'),name='conv2Extra%d' % i)
131 return cv
132
133 # --------------------------------------------------
134 # final (top) layer
135 # --------------------------------------------------
136
137 with tf.name_scope('lt'):
138 ltWeights1 = tf.Variable(tf.truncated_normal([1, 1, nOutX[1], nClasses], stddev=stdDev0),name='kernel')
139 def lt(hidden):
140 return tf.nn.conv2d(hidden, ltWeights1, strides=[1, 1, 1, 1], padding='SAME',name='conv')
141
142
143 # --------------------------------------------------
144 # upsampling
145 # --------------------------------------------------
146
147 with tf.name_scope('upsampling'):
148 usX = []
149 usX.append(b)
150
151 for i in range(UNet2D.hp['nLayers']):
152 usX.append(up_samp_layer(usX[i],UNet2D.hp['nLayers']-1-i))
153
154 t = lt(usX[UNet2D.hp['nLayers']])
155
156
157 sm = tf.nn.softmax(t,-1)
158 UNet2D.nn = sm
159
160
161 def train(imPath,logPath,modelPath,pmPath,nTrain,nValid,nTest,restoreVariables,nSteps,gpuIndex,testPMIndex):
162 os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
163
164 outLogPath = logPath
165 trainWriterPath = pathjoin(logPath,'Train')
166 validWriterPath = pathjoin(logPath,'Valid')
167 outModelPath = pathjoin(modelPath,'model.ckpt')
168 outPMPath = pmPath
169
170 batchSize = UNet2D.hp['batchSize']
171 imSize = UNet2D.hp['imSize']
172 nChannels = UNet2D.hp['nChannels']
173 nClasses = UNet2D.hp['nClasses']
174
175 # --------------------------------------------------
176 # data
177 # --------------------------------------------------
178
179 Train = np.zeros((nTrain,imSize,imSize,nChannels))
180 Valid = np.zeros((nValid,imSize,imSize,nChannels))
181 Test = np.zeros((nTest,imSize,imSize,nChannels))
182 LTrain = np.zeros((nTrain,imSize,imSize,nClasses))
183 LValid = np.zeros((nValid,imSize,imSize,nClasses))
184 LTest = np.zeros((nTest,imSize,imSize,nClasses))
185
186 print('loading data, computing mean / st dev')
187 if not os.path.exists(modelPath):
188 os.makedirs(modelPath)
189 if restoreVariables:
190 datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
191 datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
192 else:
193 datasetMean = 0.09
194 datasetStDev = 0.09
195 #for iSample in range(nTrain+nValid+nTest):
196 # I = im2double(tifread('%s/I%05d_Img.tif' % (imPath,iSample)))
197 # datasetMean += np.mean(I)
198 # datasetStDev += np.std(I)
199 #datasetMean /= (nTrain+nValid+nTest)
200 #datasetStDev /= (nTrain+nValid+nTest)
201 saveData(datasetMean, pathjoin(modelPath,'datasetMean.data'))
202 saveData(datasetStDev, pathjoin(modelPath,'datasetStDev.data'))
203
204 perm = np.arange(nTrain+nValid+nTest)
205 np.random.shuffle(perm)
206
207 for iSample in range(0, nTrain):
208 path = '%s/I%05d_Img.tif' % (imPath,perm[iSample])
209 im = im2double(tifread(path))
210 #im = im[0, 0, 0, :, :]
211 Train[iSample,:,:,0] = (im-datasetMean)/datasetStDev
212 path = '%s/I%05d_Ant.tif' % (imPath,perm[iSample])
213 im = tifread(path)
214 for i in range(nClasses):
215 LTrain[iSample,:,:,i] = (im == i+1)
216
217 for iSample in range(0, nValid):
218 path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+iSample])
219 im = im2double(tifread(path))
220 #im = im[0, 0, 0, :, :]
221 Valid[iSample,:,:,0] = (im-datasetMean)/datasetStDev
222 path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+iSample])
223 im = tifread(path)
224 for i in range(nClasses):
225 LValid[iSample,:,:,i] = (im == i+1)
226
227 for iSample in range(0, nTest):
228 path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+nValid+iSample])
229 im = im2double(tifread(path))
230 #im = im[0, 0, 0, :, :]
231 Test[iSample,:,:,0] = (im-datasetMean)/datasetStDev
232 path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+nValid+iSample])
233 im = tifread(path)
234 for i in range(nClasses):
235 LTest[iSample,:,:,i] = (im == i+1)
236
237 # --------------------------------------------------
238 # optimization
239 # --------------------------------------------------
240
241 tfLabels = tf.placeholder("float", shape=[None,imSize,imSize,nClasses],name='labels')
242
243 globalStep = tf.Variable(0,trainable=False)
244 learningRate0 = 0.05
245 decaySteps = 1000
246 decayRate = 0.95
247 learningRate = tf.train.exponential_decay(learningRate0,globalStep,decaySteps,decayRate,staircase=True)
248
249 with tf.name_scope('optim'):
250 loss = tf.reduce_mean(-tf.reduce_sum(tf.multiply(tfLabels,tf.log(UNet2D.nn)),3))
251 updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
252 # optimizer = tf.train.MomentumOptimizer(1e-3,0.9)
253 optimizer = tf.train.MomentumOptimizer(learningRate,0.9)
254 # optimizer = tf.train.GradientDescentOptimizer(learningRate)
255 with tf.control_dependencies(updateOps):
256 optOp = optimizer.minimize(loss,global_step=globalStep)
257
258 with tf.name_scope('eval'):
259 error = []
260 for iClass in range(nClasses):
261 labels0 = tf.reshape(tf.to_int32(tf.slice(tfLabels,[0,0,0,iClass],[-1,-1,-1,1])),[batchSize,imSize,imSize])
262 predict0 = tf.reshape(tf.to_int32(tf.equal(tf.argmax(UNet2D.nn,3),iClass)),[batchSize,imSize,imSize])
263 correct = tf.multiply(labels0,predict0)
264 nCorrect0 = tf.reduce_sum(correct)
265 nLabels0 = tf.reduce_sum(labels0)
266 error.append(1-tf.to_float(nCorrect0)/tf.to_float(nLabels0))
267 errors = tf.tuple(error)
268
269 # --------------------------------------------------
270 # inspection
271 # --------------------------------------------------
272
273 with tf.name_scope('scalars'):
274 tf.summary.scalar('avg_cross_entropy', loss)
275 for iClass in range(nClasses):
276 tf.summary.scalar('avg_pixel_error_%d' % iClass, error[iClass])
277 tf.summary.scalar('learning_rate', learningRate)
278 with tf.name_scope('images'):
279 #split0 = tf.slice(UNet2D.nn,[0,0,0,0],[-1,-1,-1,1])
280 split0 = tf.slice(UNet2D.nn,[0,0,0,1],[-1,-1,-1,1])
281 split1 = tf.slice(tfLabels, [0, 0, 0, 0], [-1, -1, -1, 1])
282 if nClasses > 2:
283 split2 = tf.slice(UNet2D.nn,[0,0,0,2],[-1,-1,-1,1])
284 tf.summary.image('pm0',split0)
285 tf.summary.image('pm1',split1)
286 if nClasses > 2:
287 tf.summary.image('pm2',split2)
288 merged = tf.summary.merge_all()
289
290
291 # --------------------------------------------------
292 # session
293 # --------------------------------------------------
294
295 saver = tf.train.Saver()
296 sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
297
298 if os.path.exists(outLogPath):
299 shutil.rmtree(outLogPath)
300 trainWriter = tf.summary.FileWriter(trainWriterPath, sess.graph)
301 validWriter = tf.summary.FileWriter(validWriterPath, sess.graph)
302
303 if restoreVariables:
304 saver.restore(sess, outModelPath)
305 print("Model restored.")
306 else:
307 sess.run(tf.global_variables_initializer())
308
309 # --------------------------------------------------
310 # train
311 # --------------------------------------------------
312
313 batchData = np.zeros((batchSize,imSize,imSize,nChannels))
314 batchLabels = np.zeros((batchSize,imSize,imSize,nClasses))
315 for i in range(nSteps):
316 # train
317
318 perm = np.arange(nTrain)
319 np.random.shuffle(perm)
320
321 for j in range(batchSize):
322 batchData[j,:,:,:] = Train[perm[j],:,:,:]
323 batchLabels[j,:,:,:] = LTrain[perm[j],:,:,:]
324
325 summary,_ = sess.run([merged,optOp],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 1})
326 trainWriter.add_summary(summary, i)
327
328 # validation
329
330 perm = np.arange(nValid)
331 np.random.shuffle(perm)
332
333 for j in range(batchSize):
334 batchData[j,:,:,:] = Valid[perm[j],:,:,:]
335 batchLabels[j,:,:,:] = LValid[perm[j],:,:,:]
336
337 summary, es = sess.run([merged, errors],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
338 validWriter.add_summary(summary, i)
339
340 e = np.mean(es)
341 print('step %05d, e: %f' % (i,e))
342
343 if i == 0:
344 if restoreVariables:
345 lowestError = e
346 else:
347 lowestError = np.inf
348
349 if np.mod(i,100) == 0 and e < lowestError:
350 lowestError = e
351 print("Model saved in file: %s" % saver.save(sess, outModelPath))
352
353
354 # --------------------------------------------------
355 # test
356 # --------------------------------------------------
357
358 if not os.path.exists(outPMPath):
359 os.makedirs(outPMPath)
360
361 for i in range(nTest):
362 j = np.mod(i,batchSize)
363
364 batchData[j,:,:,:] = Test[i,:,:,:]
365 batchLabels[j,:,:,:] = LTest[i,:,:,:]
366
367 if j == batchSize-1 or i == nTest-1:
368
369 output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
370
371 for k in range(j+1):
372 pm = output[k,:,:,testPMIndex]
373 gt = batchLabels[k,:,:,testPMIndex]
374 im = np.sqrt(normalize(batchData[k,:,:,0]))
375 imwrite(np.uint8(255*np.concatenate((im,np.concatenate((pm,gt),axis=1)),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
376
377
378 # --------------------------------------------------
379 # save hyper-parameters, clean-up
380 # --------------------------------------------------
381
382 saveData(UNet2D.hp,pathjoin(modelPath,'hp.data'))
383
384 trainWriter.close()
385 validWriter.close()
386 sess.close()
387
388 def deploy(imPath,nImages,modelPath,pmPath,gpuIndex,pmIndex):
389 os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
390
391 variablesPath = pathjoin(modelPath,'model.ckpt')
392 outPMPath = pmPath
393
394 hp = loadData(pathjoin(modelPath,'hp.data'))
395 UNet2D.setupWithHP(hp)
396
397 batchSize = UNet2D.hp['batchSize']
398 imSize = UNet2D.hp['imSize']
399 nChannels = UNet2D.hp['nChannels']
400 nClasses = UNet2D.hp['nClasses']
401
402 # --------------------------------------------------
403 # data
404 # --------------------------------------------------
405
406 Data = np.zeros((nImages,imSize,imSize,nChannels))
407
408 datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
409 datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
410
411 for iSample in range(0, nImages):
412 path = '%s/I%05d_Img.tif' % (imPath,iSample)
413 im = im2double(tifread(path))
414 #im = im[0, 0, 0, :, :]
415 Data[iSample,:,:,0] = (im-datasetMean)/datasetStDev
416
417 # --------------------------------------------------
418 # session
419 # --------------------------------------------------
420
421 saver = tf.train.Saver()
422 sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
423
424 saver.restore(sess, variablesPath)
425 print("Model restored.")
426
427 # --------------------------------------------------
428 # deploy
429 # --------------------------------------------------
430
431 batchData = np.zeros((batchSize,imSize,imSize,nChannels))
432
433 if not os.path.exists(outPMPath):
434 os.makedirs(outPMPath)
435
436 for i in range(nImages):
437 print(i,nImages)
438
439 j = np.mod(i,batchSize)
440
441 batchData[j,:,:,:] = Data[i,:,:,:]
442
443 if j == batchSize-1 or i == nImages-1:
444
445 output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
446
447 for k in range(j+1):
448 pm = output[k,:,:,pmIndex]
449 im = np.sqrt(normalize(batchData[k,:,:,0]))
450 # imwrite(np.uint8(255*np.concatenate((im,pm),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
451 imwrite(np.uint8(255*im),'%s/I%05d_Im.png' % (outPMPath,i-j+k+1))
452 imwrite(np.uint8(255*pm),'%s/I%05d_PM.png' % (outPMPath,i-j+k+1))
453
454
455 # --------------------------------------------------
456 # clean-up
457 # --------------------------------------------------
458
459 sess.close()
460
461 def singleImageInferenceSetup(modelPath,gpuIndex):
462 os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
463
464 variablesPath = pathjoin(modelPath,'model.ckpt')
465
466 hp = loadData(pathjoin(modelPath,'hp.data'))
467 UNet2D.setupWithHP(hp)
468
469 UNet2D.DatasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
470 UNet2D.DatasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
471 print(UNet2D.DatasetMean)
472 print(UNet2D.DatasetStDev)
473
474 # --------------------------------------------------
475 # session
476 # --------------------------------------------------
477
478 saver = tf.train.Saver()
479 UNet2D.Session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
480
481 saver.restore(UNet2D.Session, variablesPath)
482 print("Model restored.")
483
484 def singleImageInferenceCleanup():
485 UNet2D.Session.close()
486
487 def singleImageInference(image,mode,pmIndex):
488 print('Inference...')
489
490 batchSize = UNet2D.hp['batchSize']
491 imSize = UNet2D.hp['imSize']
492 nChannels = UNet2D.hp['nChannels']
493
494 PI2D.setup(image,imSize,int(imSize/8),mode)
495 PI2D.createOutput(nChannels)
496
497 batchData = np.zeros((batchSize,imSize,imSize,nChannels))
498 for i in range(PI2D.NumPatches):
499 j = np.mod(i,batchSize)
500 batchData[j,:,:,0] = (PI2D.getPatch(i)-UNet2D.DatasetMean)/UNet2D.DatasetStDev
501 if j == batchSize-1 or i == PI2D.NumPatches-1:
502 output = UNet2D.Session.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
503 for k in range(j+1):
504 pm = output[k,:,:,pmIndex]
505 PI2D.patchOutput(i-j+k,pm)
506 # PI2D.patchOutput(i-j+k,normalize(imgradmag(PI2D.getPatch(i-j+k),1)))
507
508 return PI2D.getValidOutput()
509
510
511 if __name__ == '__main__':
512 logPath = 'D:\\LSP\\UNet\\Coreograph\\TFLogs'
513 modelPath = 'D:\\LSP\\Coreograph\\model-4layersMaskAug20New'
514 pmPath = 'D:\\LSP\\UNet\\Coreograph\\TFProbMaps'
515
516
517 # ----- test 1 -----
518
519 # imPath = 'D:\\LSP\\UNet\\tonsil20x1bin1chan\\tonsilAnnotations'
520 imPath = 'Z:/IDAC/Clarence/LSP/CyCIF/TMA/training data custom unaveraged'
521 # UNet2D.setup(128,1,2,8,2,2,3,1,0.1,2,8)
522 # UNet2D.train(imPath,logPath,modelPath,pmPath,500,100,40,True,20000,1,0)
523 UNet2D.setup(128, 1, 2, 20, 2, 2, 3, 2, 0.03, 4, 32)
524 UNet2D.train(imPath, logPath, modelPath, pmPath, 2053, 513 , 641, True, 10, 1, 1)
525 UNet2D.deploy(imPath,100,modelPath,pmPath,1,1)
526
527 # I = im2double(tifread('/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/SinemSaka_NucleiSegmentation_SingleImageInferenceTest3.tif'))
528 # UNet2D.singleImageInferenceSetup(modelPath,0)
529 # J = UNet2D.singleImageInference(I,'accumulate',0)
530 # UNet2D.singleImageInferenceCleanup()
531 # # imshowlist([I,J])
532 # # sys.exit(0)
533 # # tifwrite(np.uint8(255*I),'/home/mc457/Workspace/I1.tif')
534 # # tifwrite(np.uint8(255*J),'/home/mc457/Workspace/I2.tif')
535 # K = np.zeros((2,I.shape[0],I.shape[1]))
536 # K[0,:,:] = I
537 # K[1,:,:] = J
538 # tifwrite(np.uint8(255*K),'/home/mc457/Workspace/Sinem_NucSeg.tif')
539
540 # UNet2D.singleImageInferenceSetup(modelPath,0)
541 # imagePath = 'Y://sorger//data//RareCyte//Connor//Topacio_P2_AF//ashlar//C0078'
542 #
543 # fileList = glob.glob(imagePath + '//registration//C0078.ome.tif')
544 # print(fileList)
545 # for iFile in fileList:
546 # fileName = os.path.basename(iFile)
547 # fileNamePrefix = fileName.split(os.extsep, 1)
548 # I = im2double(tifffile.imread(iFile, key=0))
549 # hsize = int((float(I.shape[0])*float(0.75)))
550 # vsize = int((float(I.shape[1])*float(0.75)))
551 # I = resize(I,(hsize,vsize))
552 # J = UNet2D.singleImageInference(I,'accumulate',1)
553 # K = np.zeros((3,I.shape[0],I.shape[1]))
554 # K[2,:,:] = I
555 # K[0,:,:] = J
556 # J = UNet2D.singleImageInference(I, 'accumulate', 2)
557 # K[1, :, :] = J
558 # outputPath = imagePath + '//prob_maps'
559 # if not os.path.exists(outputPath):
560 # os.makedirs(outputPath)
561 # tifwrite(np.uint8(255*K),outputPath + '//' + fileNamePrefix[0] +'_NucSeg.tif')
562 # UNet2D.singleImageInferenceCleanup()
563
564
565 # ----- test 2 -----
566
567 # imPath = '/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/ClarenceYapp_NucleiSegmentation'
568 # UNet2D.setup(128,1,2,8,2,2,3,1,0.1,3,4)
569 # UNet2D.train(imPath,logPath,modelPath,pmPath,800,100,100,False,10,1)
570 # UNet2D.deploy(imPath,100,modelPath,pmPath,1)
571
572
573 # ----- test 3 -----
574
575 # imPath = '/home/mc457/files/CellBiology/IDAC/Marcelo/Etc/UNetTestSets/CarmanLi_CellTypeSegmentation'
576 # # UNet2D.setup(256,1,2,8,2,2,3,1,0.1,3,4)
577 # # UNet2D.train(imPath,logPath,modelPath,pmPath,1400,100,164,False,10000,1)
578 # UNet2D.deploy(imPath,164,modelPath,pmPath,1)
579
580
581 # ----- test 4 -----
582
583 # imPath = '/home/cicconet/Downloads/TrainSet1'
584 # UNet2D.setup(64,1,2,8,2,2,3,1,0.1,3,4)
585 # UNet2D.train(imPath,logPath,modelPath,pmPath,200,8,8,False,2000,1,0)
586 # # UNet2D.deploy(imPath,164,modelPath,pmPath,1)