Mercurial > repos > perssond > unmicst
view unmicst.xml @ 1:74fe58ff55a5 draft default tip
planemo upload for repository https://github.com/HMS-IDAC/UnMicst commit e14f76a8803cab0013c6dbe809bc81d7667f2ab9
author | goeckslab |
---|---|
date | Wed, 07 Sep 2022 23:10:14 +0000 |
parents | 6bec4fef6b2e |
children |
line wrap: on
line source
<tool id="unmicst" name="UnMicst" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="19.01"> <description>Image segmentation - probability map generation</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <expand macro="version_cmd"/> <command detect_errors="exit_code"><![CDATA[ #set $ext = str($image.file_ext) #if $ext == 'tiff' #set $ext = 'tif' #end if #set $input = 'image.' + str($ext) ln -s '$image' '$input' && @CMD_BEGIN@ '$input' --tool $tool #if $stackoutput --stackOutput #end if --outputPath '.' --channel $channel --model $model --mean $mean --std $stdev --scalingFactor $scalingfactor --outlier $outlier && ## Move files to different files for from_work_dir differentiation #if $stackoutput mv *Probabilities*.tif Probabilities.tif && mv qc/*Preview*.tif Preview.tif #else mv *ContoursPM*.tif ContoursPM.tif && mv *NucleiPM*.tif NucleiPM.tif #end if ]]></command> <inputs> <param name="tool" type="select" label="UnMicst Tool"> <option selected="true" value="unmicst-solo">unmicst-solo</option> <option value="unmicst-duo">unmicst-duo</option> <option value="unmicst-legacy">unmicst-legacy</option> <option value="UnMicstCyto2">UnMicstCyto2</option> </param> <param name="image" type="data" format="tiff" label="Registered TIFF"/> <param name="model" type="select" label="Model"> <option value="nucleiDAPI">nucleiDAPI</option> <option value="CytoplasmIncell">CytoplasmIncell</option> <option value="CytoplasmIncell2">CytoplasmIncell2</option> <option value="CytoplasmZeissNikon">CytoplasmZeissNikon</option> <option value="mousenucleiDAPI">mousenucleiDAPI</option> <option value="nucleiDAPI1-5">nucleiDAPI1-5</option> <option value="nucleiDAPILAMIN">nucleiDAPILAMIN</option> </param> <param name="mean" type="float" value="-1" label="Mean (-1 for model default)"/> <param name="stdev" type="float" value="-1" label="Standard Deviation (-1 for model default)"/> <param name="channel" type="integer" value="0" label="Channel to perform inference on"/> <param name="stackoutput" type="boolean" label="Stack probability map outputs"/> <param name="scalingfactor" type="float" value="1.0" label="Factor to scale by"/> <param name="outlier" type="float" value="-1.0" label="Map percentile intensity to max when rescaling intensity values"/> </inputs> <outputs> <data format="tiff" name="previews" from_work_dir="Preview.tif" label="${tool.name} on ${on_string}: Preview"> <filter>stackoutput</filter> </data> <data format="tiff" name="probabilities" from_work_dir="Probabilities.tif" label="${tool.name} on ${on_string}: Probabilities"> <filter>stackoutput</filter> </data> <data format="tiff" name="contours" from_work_dir="ContoursPM.tif" label="${tool.name} on ${on_string}: ContoursPM"> <filter>not stackoutput</filter> </data> <data format="tiff" name="nuclei" from_work_dir="NucleiPM.tif" label="${tool.name} on ${on_string}: NucleiPM"> <filter>not stackoutput</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="image" value="105.tif" ftype="tiff" /> <param name="model" value="nucleiDAPI" /> <param name="tool" value="unmicst-legacy"/> <param name="channel" value="1"/> <output name="nuclei" file="105_NucleiPM_1.tif" compare="sim_size" delta="10" /> <output name="contours" file="105_ContoursPM_1.tif" compare="sim_size" delta="10" /> </test> </tests> <help><![CDATA[ ------- UNMICST ------- **UnMICST** uses a convolutional neural network to annotate each pixel with the probability that it belongs to a given subcellular component (nucleus, cytoplasm, cell boundary). Check the UnMICST website for the most up-to-date documentation. **Input** An .ome.tif, preferably flat field corrected. The model is trained on images acquired at a pixelsize of 0.65 microns/px. If your settings differ, you can upsample/downsample to some extent. **Output** 1. a .tif stack where the different probability maps for each class are concatenated in the Z-axis in the order: nuclei foreground, nuclei contours, and background. 2. a QC image with the DNA image concatenated with the nuclei contour probability map with suffix Preview More infortion available at: https://labsyspharm.github.io/UnMICST-info/. ]]></help> <expand macro="citations" /> </tool>