changeset 23:e2bbc79f0fac draft

"planemo upload commit baf4ca09569b1b709c37f2df712e778da05edaf9-dirty"
author petr-novak
date Wed, 25 Jan 2023 13:06:55 +0000
parents 1eabd42e00ef
children df99812ded92
files LICENCE README.md configuration.py coverage2gff.py dante.py dante.xml dante_gff_output_filtering.py dante_gff_output_filtering.xml dante_gff_to_dna.py dante_gff_to_dna.xml dante_gff_to_tabular.xml dom_prot_seq.fa fasta2database.R fasta2database.py parse_aln.py summarize_gff.R summarize_gff.xml test-data/GEPY_test_long_1.fa test-data/GEPY_test_long_1.fa.fai test-data/GEPY_test_long_1_output_unfiltered.gff3 test-data/single_fasta.gff3 test-data/single_fasta_filtered.gff3 test-data/test_seq_1 test-data/vyber-Ty1_01.fasta tests.sh tool-data/rexdb_versions.loc.sample tool-data/select_domain.loc.sample tool_dependencies.xml
diffstat 28 files changed, 57 insertions(+), 4376 deletions(-) [+]
line wrap: on
line diff
--- a/LICENCE	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,674 +0,0 @@
-          GNU GENERAL PUBLIC LICENSE
-                       Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-                            Preamble
-
-  The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
-  The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works.  By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users.  We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors.  You can apply it to
-your programs, too.
-
-  When we speak of free software, we are referring to freedom, not
-price.  Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
-  To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights.  Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
-  For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received.  You must make sure that they, too, receive
-or can get the source code.  And you must show them these terms so they
-know their rights.
-
-  Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
-  For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software.  For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
-  Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so.  This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software.  The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable.  Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products.  If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
-  Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary.  To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
-  The precise terms and conditions for copying, distribution and
-modification follow.
-
-                       TERMS AND CONDITIONS
-
-  0. Definitions.
-
-  "This License" refers to version 3 of the GNU General Public License.
-
-  "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
-  "The Program" refers to any copyrightable work licensed under this
-License.  Each licensee is addressed as "you".  "Licensees" and
-"recipients" may be individuals or organizations.
-
-  To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy.  The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
-  A "covered work" means either the unmodified Program or a work based
-on the Program.
-
-  To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy.  Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
-  To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies.  Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
-  An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License.  If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
-  1. Source Code.
-
-  The "source code" for a work means the preferred form of the work
-for making modifications to it.  "Object code" means any non-source
-form of a work.
-
-  A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
-  The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form.  A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
-  The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities.  However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work.  For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
-  The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
-  The Corresponding Source for a work in source code form is that
-same work.
-
-  2. Basic Permissions.
-
-  All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met.  This License explicitly affirms your unlimited
-permission to run the unmodified Program.  The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work.  This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
-  You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force.  You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright.  Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
-  Conveying under any other circumstances is permitted solely under
-the conditions stated below.  Sublicensing is not allowed; section 10
-makes it unnecessary.
-
-  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
-  No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
-  When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
-  4. Conveying Verbatim Copies.
-
-  You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
-  You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
-  5. Conveying Modified Source Versions.
-
-  You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
-    a) The work must carry prominent notices stating that you modified
-    it, and giving a relevant date.
-
-    b) The work must carry prominent notices stating that it is
-    released under this License and any conditions added under section
-    7.  This requirement modifies the requirement in section 4 to
-    "keep intact all notices".
-
-    c) You must license the entire work, as a whole, under this
-    License to anyone who comes into possession of a copy.  This
-    License will therefore apply, along with any applicable section 7
-    additional terms, to the whole of the work, and all its parts,
-    regardless of how they are packaged.  This License gives no
-    permission to license the work in any other way, but it does not
-    invalidate such permission if you have separately received it.
-
-    d) If the work has interactive user interfaces, each must display
-    Appropriate Legal Notices; however, if the Program has interactive
-    interfaces that do not display Appropriate Legal Notices, your
-    work need not make them do so.
-
-  A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit.  Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
-  6. Conveying Non-Source Forms.
-
-  You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
-    a) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by the
-    Corresponding Source fixed on a durable physical medium
-    customarily used for software interchange.
-
-    b) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by a
-    written offer, valid for at least three years and valid for as
-    long as you offer spare parts or customer support for that product
-    model, to give anyone who possesses the object code either (1) a
-    copy of the Corresponding Source for all the software in the
-    product that is covered by this License, on a durable physical
-    medium customarily used for software interchange, for a price no
-    more than your reasonable cost of physically performing this
-    conveying of source, or (2) access to copy the
-    Corresponding Source from a network server at no charge.
-
-    c) Convey individual copies of the object code with a copy of the
-    written offer to provide the Corresponding Source.  This
-    alternative is allowed only occasionally and noncommercially, and
-    only if you received the object code with such an offer, in accord
-    with subsection 6b.
-
-    d) Convey the object code by offering access from a designated
-    place (gratis or for a charge), and offer equivalent access to the
-    Corresponding Source in the same way through the same place at no
-    further charge.  You need not require recipients to copy the
-    Corresponding Source along with the object code.  If the place to
-    copy the object code is a network server, the Corresponding Source
-    may be on a different server (operated by you or a third party)
-    that supports equivalent copying facilities, provided you maintain
-    clear directions next to the object code saying where to find the
-    Corresponding Source.  Regardless of what server hosts the
-    Corresponding Source, you remain obligated to ensure that it is
-    available for as long as needed to satisfy these requirements.
-
-    e) Convey the object code using peer-to-peer transmission, provided
-    you inform other peers where the object code and Corresponding
-    Source of the work are being offered to the general public at no
-    charge under subsection 6d.
-
-  A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
-  A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling.  In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage.  For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product.  A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
-  "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source.  The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
-  If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information.  But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
-  The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed.  Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
-  Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
-  7. Additional Terms.
-
-  "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law.  If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
-  When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it.  (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.)  You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
-  Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
-    a) Disclaiming warranty or limiting liability differently from the
-    terms of sections 15 and 16 of this License; or
-
-    b) Requiring preservation of specified reasonable legal notices or
-    author attributions in that material or in the Appropriate Legal
-    Notices displayed by works containing it; or
-
-    c) Prohibiting misrepresentation of the origin of that material, or
-    requiring that modified versions of such material be marked in
-    reasonable ways as different from the original version; or
-
-    d) Limiting the use for publicity purposes of names of licensors or
-    authors of the material; or
-
-    e) Declining to grant rights under trademark law for use of some
-    trade names, trademarks, or service marks; or
-
-    f) Requiring indemnification of licensors and authors of that
-    material by anyone who conveys the material (or modified versions of
-    it) with contractual assumptions of liability to the recipient, for
-    any liability that these contractual assumptions directly impose on
-    those licensors and authors.
-
-  All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10.  If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term.  If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
-  If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
-  Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
-  8. Termination.
-
-  You may not propagate or modify a covered work except as expressly
-provided under this License.  Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
-  However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
-  Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
-  Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License.  If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
-  9. Acceptance Not Required for Having Copies.
-
-  You are not required to accept this License in order to receive or
-run a copy of the Program.  Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance.  However,
-nothing other than this License grants you permission to propagate or
-modify any covered work.  These actions infringe copyright if you do
-not accept this License.  Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
-  10. Automatic Licensing of Downstream Recipients.
-
-  Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License.  You are not responsible
-for enforcing compliance by third parties with this License.
-
-  An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations.  If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
-  You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License.  For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
-  11. Patents.
-
-  A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based.  The
-work thus licensed is called the contributor's "contributor version".
-
-  A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version.  For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
-  Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
-  In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement).  To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
-  If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients.  "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
-  If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
-  A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License.  You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
-  Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
-  12. No Surrender of Others' Freedom.
-
-  If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License.  If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all.  For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
-  13. Use with the GNU Affero General Public License.
-
-  Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work.  The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
-  14. Revised Versions of this License.
-
-  The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time.  Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
-  Each version is given a distinguishing version number.  If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation.  If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
-  If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
-  Later license versions may give you additional or different
-permissions.  However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
-  15. Disclaimer of Warranty.
-
-  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
-  16. Limitation of Liability.
-
-  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
-  17. Interpretation of Sections 15 and 16.
-
-  If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
-                     END OF TERMS AND CONDITIONS
-
-            How to Apply These Terms to Your New Programs
-
-  If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
-  To do so, attach the following notices to the program.  It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-    <one line to give the program's name and a brief idea of what it does.>
-    Copyright (C) <year>  <name of author>
-
-    This program is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <https://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
-  If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
-    <program>  Copyright (C) <year>  <name of author>
-    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
-    This is free software, and you are welcome to redistribute it
-    under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License.  Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
-  You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<https://www.gnu.org/licenses/>.
-
-  The GNU General Public License does not permit incorporating your program
-into proprietary programs.  If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library.  If this is what you want to do, use the GNU Lesser General
-Public License instead of this License.  But first, please read
-<https://www.gnu.org/licenses/why-not-lgpl.html>.
--- a/README.md	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,219 +0,0 @@
-# Domain based annotation of transposable elements  - DANTE #
-
-### Authors 
- Nina Hostakova, Petr Novak, Pavel Neumann, Jiri Macas
- Biology Centre CAS, Czech Republic
- 
- 
-### Introduction
-
-* Protein Domains Finder [dante.py]
-	* Script performs scanning of given DNA sequence(s) in (multi)fasta format in order to discover protein domains using our protein domains database.
-	* Domains searching is accomplished engaging LASTAL alignment tool.
-	* Domains are subsequently annotated and classified - in case certain domain has multiple annotations assigned, classifation is derived from the common classification level of all of them. 	
-			
-* Proteins Domains Filter [dante_gff_output_filtering.py]
-	* filters GFF3 output from previous step to obtain certain kind of domain and/or allows to adjust quality filtering  
-        
-### DEPENDENCIES ###
-
-* python3.4 or higher with packages:	
-	* numpy
-	* biopython
-* [lastal](http://last.cbrc.jp/doc/last.html) 744 or higher
-* ProfRep/DANTE modules:
-	* configuration.py 
-
-
-### Protein Domains Finder ###
-
-This tool provides **preliminary** output of all domains types which are not filtered for quality.
-
-#### INPUTS ####
-
-* DNA sequence [multiFasta]
-		
-#### OUTPUTS ####
-		
-* **All protein domains GFF3** - individual domains are reported per line as regions (start-end) on the original DNA sequence including the seq ID and strand orientation. The last "Attributes" column contains several comma-separated information related to the domain annotation, alignment and its quality. This file can undergo further filtering using Protein Domain Filter tool.		
-
-#### USAGE ####
-
-		usage: dante.py [-h] -q QUERY -pdb PROTEIN_DATABASE -cs
-								  CLASSIFICATION [-oug DOMAIN_GFF] [-nld NEW_LDB]
-								  [-dir OUTPUT_DIR] [-thsc THRESHOLD_SCORE]
-								  [-wd WIN_DOM] [-od OVERLAP_DOM]
-								  
-		optional arguments:
-		  -h, --help            show this help message and exit
-		  -oug DOMAIN_GFF, --domain_gff DOMAIN_GFF
-								output domains gff format (default: None)
-		  -nld NEW_LDB, --new_ldb NEW_LDB
-								create indexed database files for lastal in case of
-								working with new protein db (default: False)
-		  -dir OUTPUT_DIR, --output_dir OUTPUT_DIR
-								specify if you want to change the output directory
-								(default: None)
-		  -thsc THRESHOLD_SCORE, --threshold_score THRESHOLD_SCORE
-								percentage of the best score in the cluster to be
-								tolerated when assigning annotations per base
-								(default: 80)
-		  -wd WIN_DOM, --win_dom WIN_DOM
-								window to process large input sequences sequentially
-								(default: 10000000)
-		  -od OVERLAP_DOM, --overlap_dom OVERLAP_DOM
-								overlap of sequences in two consecutive windows
-								(default: 10000)
-
-		required named arguments:
-		  -q QUERY, --query QUERY
-								input DNA sequence to search for protein domains in a
-								fasta format. Multifasta format allowed. (default:
-								None)
-		  -pdb PROTEIN_DATABASE, --protein_database PROTEIN_DATABASE
-								protein domains database file (default: None)
-		  -cs CLASSIFICATION, --classification CLASSIFICATION
-								protein domains classification file (default: None)
-
-
-		
-#### HOW TO RUN EXAMPLE ####
-		./protein_domains.py -q PATH_TO_INPUT_SEQ -pdb PATH_TO_PROTEIN_DB -cs PATH_TO_CLASSIFICATION_FILE
-		
-	 When running for the first time with a new database use -nld option allowing lastal to create indexed database files:
-
-         -nld True
-
-	use other arguments if you wish to rename your outputs or they will be created automatically with standard names 
-	
-### Protein Domains Filter ###
-		
-The script performs Protein Domains Finder output filtering for quality and/or extracting specific type of protein domain or mobile elements of origin. For the filtered domains it reports their translated protein sequence of original DNA.
-
-WHEN NO PARAMETERS GIVEN, IT PERFORMS QUALITY FILTERING USING THE DEFAULT PARAMETRES (optimized for Viridiplantae species)
-
-#### INPUTS ####
-* GFF3 file produced by protein_domains.py OR already filtered GFF3
-	
-#### Filtering options ####
-* QUALITY: 
-	- Min relative length of alignemnt to the protein domain from DB (without gaps)
-	- Identity 
-	- Similarity (scoring matrix: BLOSUM80)
-	- Interruption in the reading frame (frameshifts + stop codons) per every starting 100 AA
-	- Max alignment proportion to the original length of database domain sequence
-* DOMAIN TYPE: 'Name' attribute in GFF - see choices bellow
-Records for ambiguous domain type (e.g. INT/RH) are filtered out automatically
-
-* MOBILE ELEMENT TYPE:
-arbitrary substring of the element classification ('Final_Classification' attribute in GFF)
-		
-#### OUTPUTS ####
-* filtered GFF3 file
-* fasta file of translated protein sequences for the aligned domains that match the filtering criteria 
-	! as it is taken from the best hit alignment reported by LAST, it does not neccessary cover the whole region reported as domain in GFF
-	
-#### USAGE ####		
-
-		usage: dante_gff_output_filtering.py [-h] -dg DOM_GFF [-ouf DOMAINS_FILTERED]
-                            [-dps DOMAINS_PROT_SEQ]
-                            [-thl {float range 0.0..1.0}]
-                            [-thi {float range 0.0..1.0}]
-                            [-ths {float range 0.0..1.0}] [-ir INTERRUPTIONS]
-                            [-mlen MAX_LEN_PROPORTION]
-                            [-sd {All,GAG,INT,PROT,RH,RT,aRH,CHDCR,CHDII,TPase,YR,HEL1,HEL2,ENDO}]
-                            [-el ELEMENT_TYPE] [-dir OUTPUT_DIR]
-
-
-
-		optional arguments:
-		  -h, --help            show this help message and exit
-		  -ouf DOMAINS_FILTERED, --domains_filtered DOMAINS_FILTERED
-								output filtered domains gff file (default: None)
-		  -dps DOMAINS_PROT_SEQ, --domains_prot_seq DOMAINS_PROT_SEQ
-								output file containg domains protein sequences
-								(default: None)
-		  -thl {float range 0.0..1.0}, --th_length {float range 0.0..1.0}
-								proportion of alignment length threshold (default:
-								0.8)
-		  -thi {float range 0.0..1.0}, --th_identity {float range 0.0..1.0}
-								proportion of alignment identity threshold (default:
-								0.35)
-		  -ths {float range 0.0..1.0}, --th_similarity {float range 0.0..1.0}
-								threshold for alignment proportional similarity
-								(default: 0.45)
-		  -ir INTERRUPTIONS, --interruptions INTERRUPTIONS
-								interruptions (frameshifts + stop codons) tolerance
-								threshold per 100 AA (default: 3)
-		  -mlen MAX_LEN_PROPORTION, --max_len_proportion MAX_LEN_PROPORTION
-								maximal proportion of alignment length to the original
-								length of protein domain from database (default: 1.2)
-		  -sd {All,GAG,INT,PROT,RH,RT,aRH,CHDCR,CHDII,TPase,YR,HEL1,HEL2,ENDO}, --selected_dom {All,GAG,INT,PROT,RH,RT,aRH,CHDCR,CHDII,TPase,YR,HEL1,HEL2,ENDO}
-								filter output domains based on the domain type
-								(default: All)
-		  -el ELEMENT_TYPE, --element_type ELEMENT_TYPE
-								filter output domains by typing substring from
-								classification (default: )
-		  -dir OUTPUT_DIR, --output_dir OUTPUT_DIR
-								specify if you want to change the output directory
-								(default: None)
-
-		required named arguments:
-		  -dg DOM_GFF, --dom_gff DOM_GFF
-								basic unfiltered gff file of all domains (default:
-								None)
-
-
-
-#### HOW TO RUN EXAMPLE ####
-e.g. getting quality filtered integrase(INT) domains of all gypsy transposable elements:
-	
-	./domains_filtering.py -dom_gff PATH_TO_INPUT_GFF -pdb PATH_TO_PROTEIN_DB -cs PATH_TO_CLASSIFICATION_FILE --selected_dom INT --element_type Ty3/gypsy 
-
-
-### Extract Domains Nucleotide Sequences ###
-
-This tool extracts nucleotide sequences of protein domains from reference DNA based on DANTE's output. It can be used e.g. for deriving phylogenetic relations of individual mobile elements classes within a species. 
-
-#### INPUTS ####
-
-* original DNA sequence in multifasta format to extract the domains from 
-* GFF3 file of protein domains (**DANTE's output** - preferably filtered for quality and specific domain type)
-* Domains database classification table (to check the classification level)
-
-#### OUTPUTS ####
-
-* fasta files of domains nucleotide sequences for individual transposons lineages
-* txt file of domains counts extracted for individual lineages
-
-**- For GALAXY usage all concatenated in a single fasta file**
-
-#### USAGE ####	
-		usage: dante_gff_to_dna.py [-h] -i INPUT_DNA -d DOMAINS_GFF -cs
-			CLASSIFICATION [-out OUT_DIR] [-ex EXTENDED]
-
-		optional arguments:
-		  -h, --help            show this help message and exit
-		  -i INPUT_DNA, --input_dna INPUT_DNA
-								path to input DNA sequence
-		  -d DOMAINS_GFF, --domains_gff DOMAINS_GFF
-								GFF file of protein domains
-		  -cs CLASSIFICATION, --classification CLASSIFICATION
-								protein domains classification file
-		  -out OUT_DIR, --out_dir OUT_DIR
-								output directory
-		  -ex EXTENDED, --extended EXTENDED
-								extend the domains edges if not the whole datatabase
-								sequence was aligned
-
-#### HOW TO RUN EXAMPLE ####
-	./extract_domains_seqs.py --domains_gff PATH_PROTEIN_DOMAINS_GFF --input_dna PATH_TO_INPUT_DNA  --classification PROTEIN_DOMAINS_DB_CLASS_TBL --extended True
-
-	
-
-
-
-
-
-
-
--- a/configuration.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,23 +0,0 @@
-#!/usr/bin/env python3
-''' configuration file to set up the paths and constants '''
-import os
-
-MAIN_GIT_DIR = os.path.dirname(os.path.realpath(__file__))
-TOOL_DATA = os.path.join(MAIN_GIT_DIR, "tool-data")
-TMP = "tmp"
-SC_MATRIX_SKELETON = os.path.join(TOOL_DATA, "{}.txt.sample")
-AMBIGUOUS_TAG = "Ambiguous_domain"
-## IO
-CLASS_FILE = "ALL.classification-new"
-LAST_DB_FILE = "ALL_protein-domains_05.fasta"
-DOM_PROT_SEQ = "dom_prot_seq.fa"
-FILT_DOM_GFF = "domains_filtered.gff"
-EXTRACT_DOM_STAT = "domains_counts.txt"
-EXTRACT_OUT_DIR = "extracted_domains"
-FASTA_LINE = 60
-SOURCE_PROFREP = "profrep"
-SOURCE_DANTE = "dante"
-DOMAINS_FEATURE = "protein_domain"
-PHASE = "."
-HEADER_GFF = "##gff-version 3"
-DOMAINS_GFF = "output_domains.gff"
--- a/coverage2gff.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-#!/usr/bin/env python3
-import argparse
-import tempfile
-import shutil
-import sys
-
-def parse_args():
-    '''Argument parsin'''
-    description = """
-    parsing cap3 assembly aln output
-    """
-
-    parser = argparse.ArgumentParser(
-        description=description,
-        formatter_class=argparse.RawTextHelpFormatter)
-    parser.add_argument(
-        '-g',
-        '--gff_file',
-        default=None,
-        required=True,
-        help="input gff3 file for appending coverage information",
-        type=str,
-        action='store')
-    parser.add_argument(
-        '-p',
-        '--profile',
-        default=None,
-        required=True,
-        help="output file for coverage profile",
-        type=str,
-        action="store")
-    return parser.parse_args()
-
-def read_coverage(profile):
-    with open(profile) as p:
-        d = {}
-        for name, prof in zip(p, p):
-            d[name[1:].strip()] = [int(i) for i in prof.split()]
-    return d
-
-
-def main():
-    args = parse_args()
-    coverage_hash = read_coverage(args.profile)
-    gff_tmp = tempfile.NamedTemporaryFile()
-    with open(args.gff_file) as f, open(gff_tmp.name, 'w') as out:
-        for line in f:
-            if line[0] == "#":
-                out.write(line)
-            else:
-                line_parts = line.split()
-                start = int(line_parts[3])
-                end = int(line_parts[4])
-                coverage = round( sum(coverage_hash[line_parts[0]][(
-                    start - 1):end]) / (end - start + 1), 3)
-                new_line = "{};Coverage={}\n".format(line.strip(), coverage)
-                out.write(new_line)
-
-    shutil.copyfile(gff_tmp.name, args.gff_file)
-
-
-if __name__ == "__main__":
-
-    main()
--- a/dante.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,934 +0,0 @@
-#!/usr/bin/env python3
-
-import numpy as np
-import subprocess
-import math
-import time
-from operator import itemgetter
-from collections import Counter
-from itertools import groupby
-import os
-import re
-import configuration
-from tempfile import NamedTemporaryFile
-import sys
-import warnings
-import shutil
-from collections import defaultdict
-
-np.set_printoptions(threshold=sys.maxsize)
-
-def alignment_scoring():
-    ''' Create hash table for alignment similarity counting: for every 
-	combination of aminoacids in alignment assign score from protein 
-	scoring matrix defined in configuration file  '''
-    score_dict = {}
-    with open(configuration.SC_MATRIX) as smatrix:
-        count = 1
-        for line in smatrix:
-            if not line.startswith("#"):
-                if count == 1:
-                    aa_all = line.rstrip().replace(" ", "")
-                else:
-                    count_aa = 1
-                    line = list(filter(None, line.rstrip().split(" ")))
-                    for aa in aa_all:
-                        score_dict["{}{}".format(line[0], aa)] = line[count_aa]
-                        count_aa += 1
-                count += 1
-    return score_dict
-
-
-def characterize_fasta(QUERY, WIN_DOM):
-    ''' Find the sequences, their lengths, starts, ends and if 
-	they exceed the window '''
-    with open(QUERY) as query:
-        headers = []
-        fasta_lengths = []
-        seq_starts = []
-        seq_ends = []
-        fasta_chunk_len = 0
-        count_line = 1
-        for line in query:
-            line = line.rstrip()
-            if line.startswith(">"):
-                headers.append(line.rstrip())
-                fasta_lengths.append(fasta_chunk_len)
-                fasta_chunk_len = 0
-                seq_starts.append(count_line + 1)
-                seq_ends.append(count_line - 1)
-            else:
-                fasta_chunk_len += len(line)
-            count_line += 1
-        seq_ends.append(count_line)
-        seq_ends = seq_ends[1:]
-        fasta_lengths.append(fasta_chunk_len)
-        fasta_lengths = fasta_lengths[1:]
-        # control if there are correct (unique) names for individual seqs:
-        # LASTAL takes seqs IDs till the first space which can then create problems with ambiguous records
-        if len(headers) > len(set([header.split(" ")[0] for header in headers
-                                   ])):
-            raise NameError(
-                '''Sequences in multifasta format are not named correctly:
-							seq IDs (before the first space) are the same''')
-
-    above_win = [idx
-                 for idx, value in enumerate(fasta_lengths) if value > WIN_DOM]
-    below_win = [idx
-                 for idx, value in enumerate(fasta_lengths)
-                 if value <= WIN_DOM]
-    lens_above_win = np.array(fasta_lengths)[above_win]
-    return headers, above_win, below_win, lens_above_win, seq_starts, seq_ends
-
-
-def split_fasta(QUERY, WIN_DOM, step, headers, above_win, below_win,
-                lens_above_win, seq_starts, seq_ends):
-    ''' Create temporary file containing all sequences - the ones that exceed 
-	the window are cut with a set overlap (greater than domain size with a reserve) '''
-    with open(QUERY, "r") as query:
-        count_fasta_divided = 0
-        count_fasta_not_divided = 0
-        ntf = NamedTemporaryFile(delete=False)
-        divided = np.array(headers)[above_win]
-        row_length = configuration.FASTA_LINE
-        for line in query:
-            line = line.rstrip()
-            if line.startswith(">") and line in divided:
-                stop_line = seq_ends[above_win[
-                    count_fasta_divided]] - seq_starts[above_win[
-                        count_fasta_divided]] + 1
-                count_line = 0
-                whole_seq = []
-                for line2 in query:
-                    whole_seq.append(line2.rstrip())
-                    count_line += 1
-                    if count_line == stop_line:
-                        break
-                whole_seq = "".join(whole_seq)
-                ## create list of starting positions for individual parts of a seq with a step given by a window and overlap
-                windows_starts = list(range(0, lens_above_win[
-                    count_fasta_divided], step))
-                ## create list of ending positions (starting pos + window), the last element is the whole seq length
-                windows_ends = [
-                    x + WIN_DOM
-                    if x + WIN_DOM < lens_above_win[count_fasta_divided] else
-                    lens_above_win[count_fasta_divided] for x in windows_starts
-                ]
-                count_part = 1
-                for start_part, end_part in zip(windows_starts, windows_ends):
-                    seq_part = whole_seq[start_part:end_part]
-                    if count_part == len(windows_starts):
-                        ntf.write("{}_DANTE_PART{}_LAST:{}-{}\n{}\n".format(
-                            line.split(" ")[0], count_part, start_part + 1,
-                            end_part, "\n".join([seq_part[i:i + row_length]
-                                                 for i in range(0, len(
-                                                     seq_part), row_length)
-                                                 ])).encode("utf-8"))
-                    else:
-                        ntf.write("{}_DANTE_PART{}:{}-{}\n{}\n".format(
-                            line.split(" ")[0], count_part, start_part + 1,
-                            end_part, "\n".join([seq_part[i:i + row_length]
-                                                 for i in range(0, len(
-                                                     seq_part), row_length)
-                                                 ])).encode("utf-8"))
-                    count_part += 1
-                count_fasta_divided += 1
-            elif line.startswith(">") and line not in divided:
-                length_seq = seq_ends[below_win[
-                    count_fasta_not_divided]] - seq_starts[below_win[
-                        count_fasta_not_divided]] + 1
-                ntf.write("{}\n{}".format(line, "".join([query.readline(
-                ) for x in range(length_seq)])).encode("utf-8"))
-                count_fasta_not_divided += 1
-        query_temp = ntf.name
-        ntf.close()
-    return query_temp
-
-
-def domain_annotation(elements, CLASSIFICATION):
-    ''' Assign protein domain to each hit from protein database  '''
-    domains = []
-    annotations = []
-    with open(CLASSIFICATION, "r") as cl_tbl:
-        annotation = {}
-        for line in cl_tbl:
-            record = line.rstrip().split("\t")
-            annotation[record[0]] = record[1:]
-    for i in range(len(elements)):
-        domains.append(elements[i].split("__")[0].split("-")[1])
-        element_name = "__".join(elements[i].split("__")[1:])
-        if element_name in annotation.keys():
-            annotations.append("|".join([elements[i].split("__")[0].split("-")[
-                1], ("|".join(annotation[element_name]))]))
-        else:
-            annotations.append("unknown|unknown")
-    return annotations
-
-
-def hits_processing(seq_len, start, end, strand):
-    ''' Gain hits intervals separately for forward and reverse strand '''
-    reverse_strand_idx = np.where(strand == "-")[0]
-    if not reverse_strand_idx.any():
-        start_pos_plus = start + 1
-        end_pos_plus = end
-        regions_plus = list(zip(start_pos_plus, end_pos_plus))
-        regions_minus = []
-    else:
-        reverse_strand_idx = reverse_strand_idx[0]
-        start_pos_plus = start[0:reverse_strand_idx] + 1
-        end_pos_plus = end[0:reverse_strand_idx]
-        start_pos_minus = seq_len[0] - end[reverse_strand_idx:] + 1
-        end_pos_minus = seq_len[0] - start[reverse_strand_idx:]
-        regions_plus = list(zip(start_pos_plus, end_pos_plus))
-        regions_minus = list(zip(start_pos_minus, end_pos_minus))
-    return reverse_strand_idx, regions_plus, regions_minus
-
-
-def overlapping_regions(input_data):
-    ''' Join all overlapping intervals(hits) to clusters (potential domains),
-	get list of start-end positions of individual hits within the interval, 
-	list of minimus and maximums as well as the indices in the original 
-	sequence_hits structure for the hits belonging to the same clusters '''
-    if input_data:
-        sorted_idx, sorted_data = zip(*sorted(
-            [(index, data) for index, data in enumerate(input_data)],
-            key=itemgetter(1)))
-        merged_ends = input_data[sorted_idx[0]][1]
-        intervals = []
-        data = []
-        output_intervals = []
-        output_data = []
-        for i, j in zip(sorted_idx, sorted_data):
-            if input_data[i][0] < merged_ends:
-                merged_ends = max(input_data[i][1], merged_ends)
-                intervals.append(i)
-                data.append(j)
-            else:
-                output_intervals.append(intervals)
-                output_data.append(data)
-                intervals = []
-                data = []
-                intervals.append(i)
-                data.append(j)
-                merged_ends = input_data[i][1]
-        output_intervals.append(intervals)
-        output_data.append(data)
-        mins = [x[0][0] for x in output_data]
-        maxs = [max(x, key=itemgetter(1))[1] for x in output_data]
-    else:
-        mins = []
-        maxs = []
-        output_intervals = []
-        output_data = []
-    return mins, maxs, output_data, output_intervals
-
-
-def annotations_dict(annotations):
-    ''' Hash table where annotations of the hits within a clusters are the keys. 
-	Each annotation has serial number assigned which indexes the row in the score_table '''
-    classes_dict = {classes: idx
-                    for idx, classes in enumerate(set(annotations))}
-    return classes_dict
-
-
-def score_table(mins, maxs, data, annotations, scores, CLASSIFICATION):
-    ''' Score table is created based on the annotations occurance in the cluster.
-	Matrix axis y corresponds to individual annotations (indexed according to classes_dict),
-    axis x represents positions of analyzed seq in a given cluster.
-    For every hit within cluster, array of scores on the corresponding position
-    is recorded to the table in case if the score on certain position is so far the highest
-	for the certain position and certain annotation '''
-    classes_dict = annotations_dict(annotations)
-    score_matrix = np.zeros((len(classes_dict), maxs - mins + 1), dtype=int)
-    count = 0
-    for item in annotations:
-        saved_scores = score_matrix[classes_dict[item], data[count][0] - mins:
-                                    data[count][1] - mins + 1]
-        new_scores = [scores[count]] * len(saved_scores)
-        score_matrix[classes_dict[item], data[count][0] - mins:data[count][
-            1] - mins + 1] = [max(*pos_score)
-                              for pos_score in zip(saved_scores, new_scores)]
-        count += 1
-    return score_matrix, classes_dict
-
-
-def score_matrix_evaluation(score_matrix, classes_dict, THRESHOLD_SCORE):
-    ''' Score matrix is evaluated based on each position.
-	For every position the list of annotations with a score which reaches 
-	certain percentage of the overal best score of the cluster are stored '''
-    ann_per_reg = []
-    overal_best_score_reg = max((score_matrix.max(axis=1)))
-    for position in score_matrix.T:
-        ## score threshold calculated as a percentage of the OVERALL best score in the cluster
-        threshold = overal_best_score_reg * THRESHOLD_SCORE / 100
-        above_th = [idx
-                    for idx, score in enumerate(position)
-                    if position[idx] >= threshold]
-        ## select unique annotations in one position that are above threshold
-        ann_per_pos = list(set(
-            [key for key, value in classes_dict.items() if value in above_th]))
-        ann_per_reg.append(ann_per_pos)
-    return ann_per_reg
-
-
-def group_annot_regs(ann_per_reg):
-    ''' Get list of domains, annotations, longest common annotations and 
-	counts of positions with certain annotation per regions '''
-    ## tranform list of lists (potential multiple annotations for every position ) to flat list of all annotations
-    all_annotations = [item for sublist in ann_per_reg for item in sublist]
-    unique_annotations = list(set(all_annotations))
-    ann_pos_counts = [all_annotations.count(x) for x in unique_annotations]
-    unique_annotations = list(set(
-        [item for sublist in ann_per_reg for item in sublist]))
-    domain_type = list(set([annotation.split("|")[0]
-                            for annotation in unique_annotations]))
-    classification_list = [annotation.split("|")
-                           for annotation in unique_annotations]
-    ann_substring = "|".join(os.path.commonprefix(classification_list))
-    domain_type = "/".join(domain_type)
-    return domain_type, ann_substring, unique_annotations, ann_pos_counts
-
-
-def best_score(scores, region):
-    ''' From overlapping intervals take the one with the highest score '''
-    ## if more hits have the same best score take only the first one
-    best_idx = region[np.where(scores == max(scores))[0][0]]
-    best_idx_reg = np.where(scores == max(scores))[0][0]
-    return best_idx, best_idx_reg
-
-
-def create_gff3(domain_type, ann_substring, unique_annotations, ann_pos_counts,
-                dom_start, dom_end, step, best_idx, annotation_best,
-                db_name_best, db_starts_best, db_ends_best, strand, score,
-                seq_id, db_seq, query_seq, domain_size, positions, gff, consensus):
-    ''' Record obtained information about domain corresponding to individual cluster to common gff file '''
-    best_start = positions[best_idx][0]
-    best_end = positions[best_idx][1]
-    best_score = score[best_idx]
-    ## proportion of length of the best hit to the whole region length found by base
-    length_proportion = int((best_end - best_start + 1) /
-                            (dom_end - dom_start + 1) * 100)
-    db_seq_best = db_seq[best_idx]
-    query_seq_best = query_seq[best_idx]
-    domain_size_best = domain_size[best_idx]
-    [percent_ident, align_similarity, relat_align_len, relat_interrupt,
-     db_len_proportion
-     ] = filter_params(db_seq_best, query_seq_best, domain_size_best)
-    ann_substring = "|".join(ann_substring.split("|")[1:])
-    annotation_best = "|".join([db_name_best] + annotation_best.split("|")[1:])
-    if "DANTE_PART" in seq_id:
-        part = int(seq_id.split("DANTE_PART")[1].split(":")[0].split("_")[0])
-        dom_start = dom_start + (part - 1) * step
-        dom_end = dom_end + (part - 1) * step
-        best_start = best_start + (part - 1) * step
-        best_end = best_end + (part - 1) * step
-    if ann_substring is '':
-        ann_substring = "NONE(Annotations from different classes)"
-    if len(unique_annotations) > 1:
-        unique_annotations = ",".join(["{}[{}bp]".format(
-            ann, pos) for ann, pos in zip(unique_annotations, ann_pos_counts)])
-    else:
-        unique_annotations = unique_annotations[0]
-    if __name__ == '__main__':
-        SOURCE = configuration.SOURCE_DANTE
-    else:
-        SOURCE = configuration.SOURCE_PROFREP
-    if "/" in domain_type:
-        gff.write(
-            "{}\t{}\t{}\t{}\t{}\t.\t{}\t{}\tName={};Final_Classification=Ambiguous_domain;Region_Hits_Classifications_={}\n".format(
-                seq_id, SOURCE, configuration.DOMAINS_FEATURE, dom_start,
-                dom_end, strand, configuration.PHASE, domain_type,
-                unique_annotations))
-    else:
-        gff.write(
-            "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\tName={};Final_Classification={};Region_Hits_Classifications={};Best_Hit={}:{}-{}[{}percent];Best_Hit_DB_Pos={}:{}of{};DB_Seq={};Region_Seq={};Query_Seq={};Identity={};Similarity={};Relat_Length={};Relat_Interruptions={};Hit_to_DB_Length={}\n".format(
-                seq_id, SOURCE, configuration.DOMAINS_FEATURE, dom_start,
-                dom_end, best_score, strand, configuration.PHASE, domain_type,
-                ann_substring, unique_annotations, annotation_best, best_start,
-                best_end, length_proportion, db_starts_best, db_ends_best,
-                domain_size_best, db_seq_best, consensus, query_seq_best, percent_ident,
-                align_similarity, relat_align_len, relat_interrupt,
-                db_len_proportion))
-
-
-def filter_params(db, query, protein_len):
-    ''' Calculate basic statistics of the quality of the alignment '''
-    score_dict = alignment_scoring()
-    num_ident = 0
-    count_interrupt = 0
-    count_similarity = 0
-    alignment_len = 0
-    for i, j in zip(db.upper(), query.upper()):
-        if i == j and i != "X":
-            num_ident += 1
-        if j == "/" or j == "\\" or j == "*":
-            count_interrupt += 1
-        if (i.isalpha() or i == "*") and (j.isalpha() or j == "*"):
-            if int(score_dict["{}{}".format(i, j)]) > 0:
-                count_similarity += 1
-    ## gapless alignment length proportional to the domain protein length
-    relat_align_len = round((len(db) - db.count("-")) / protein_len, 3)
-    ## proportional identical bases (except of X) to al.length
-    align_identity = round(num_ident / len(db), 2)
-    ## proportional count of positive scores from scoring matrix to al. length
-    align_similarity = round(count_similarity / len(db), 2)
-    ## number of interruptions per 100 bp
-    relat_interrupt = round(count_interrupt / math.ceil((len(query) / 100)), 2)
-    ## Proportion of alignment to the original length of protein domain from database (indels included)
-    db_len_proportion = round(len(db) / protein_len, 2)
-    return align_identity, align_similarity, relat_align_len, relat_interrupt, db_len_proportion
-
-
-def line_generator(tab_pipe, maf_pipe, start):
-    ''' Yield individual lines of LASTAL stdout for single sequence '''
-    if hasattr(line_generator, "dom"):
-        seq_id = line_generator.dom.split("\t")[6]
-        yield line_generator.dom.encode("utf-8")
-        del line_generator.dom
-    line_tab = ""
-    for line_tab in tab_pipe:
-        line_tab = line_tab.decode("utf-8")
-        if not line_tab.startswith('#'):
-            if start:
-                if not ('seq_id' in locals() and
-                        seq_id != line_tab.split("\t")[6]):
-                    seq_id = line_tab.split("\t")[6]
-                    start = False
-            line_maf = [maf_pipe.readline() for line_count in range(4)]
-            db_seq = line_maf[1].decode("utf-8").rstrip().split(" ")[-1]
-            alignment_seq = line_maf[2].decode("utf-8").rstrip().split(" ")[-1]
-            line = "{}\t{}\t{}".format(line_tab, db_seq, alignment_seq)
-            line_id = line.split("\t")[6]
-            if seq_id != line_id:
-                line_generator.dom = line
-                return
-            else:
-                yield line.encode("utf-8")
-        else:
-            maf_pipe.readline()
-    if line_tab == "":
-        raise RuntimeError
-    else:
-        return
-
-
-def get_version(path, LAST_DB):
-    '''Return version is run from git repository '''
-    version_string = (
-        "##-----------------------------------------------\n"
-        "##PROTEIN DATABASE VERSION : {PD}\n"
-        "##-----------------------------------------------\n").format(
-            PD=os.path.basename(LAST_DB)
-        )
-    if os.path.exists(".git"):
-        try:
-            branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD",
-                                             shell=True,
-                                             cwd=path).decode('ascii').strip()
-            shorthash = subprocess.check_output("git log --pretty=format:'%h' -n 1  ",
-                                                shell=True,
-                                                cwd=path).decode('ascii').strip()
-            revcount = len(subprocess.check_output("git log --oneline",
-                                                   shell=True,
-                                                   cwd=path).decode('ascii').split())
-            version_string = (
-                "##-----------------------------------------------\n"
-                "##PIPELINE VERSION         : "
-                "{branch}-rv-{revcount}({shorthash})\n"
-                "##PROTEIN DATABASE VERSION : {PD}\n"
-                "##-----------------------------------------------\n").format(
-                    branch=branch,
-                    shorthash=shorthash,
-                    revcount=revcount,
-                    PD=os.path.basename(LAST_DB))
-        except:
-            pass
-    return version_string
-
-
-def write_info(dom_gff_tmp, version_string):
-    dom_gff_tmp.write("{}\n".format(configuration.HEADER_GFF))
-    dom_gff_tmp.write(version_string)
-
-
-def domain_search(QUERY, LAST_DB, CLASSIFICATION, OUTPUT_DOMAIN,
-                  THRESHOLD_SCORE, WIN_DOM, OVERLAP_DOM, SCORING_MATRIX):
-    ''' Search for protein domains using our protein database and external tool LAST,
-	stdout is parsed in real time and hits for a single sequence undergo further processing
-	- tabular format(TAB) to get info about position, score, orientation
-	- MAF format to gain alignment and original sequence
-	'''
-
-    step = WIN_DOM - OVERLAP_DOM
-    [headers, above_win, below_win, lens_above_win, seq_starts, seq_ends
-     ] = characterize_fasta(QUERY, WIN_DOM)
-    query_temp = split_fasta(QUERY, WIN_DOM, step, headers, above_win,
-                             below_win, lens_above_win, seq_starts, seq_ends)
-
-    ## TAB output contains all the alignment scores, positions, strands...
-    lastal_columns = {
-        "BL80" : ("score, name_db, start_db, al_size_db, strand_db,"
-                   " seq_size_db, name_q, start_q, al_size_q, strand_q, seq_size_q,"
-                   " block1, block2, block3, db_seq, q_seq"),
-        "BL62" : ("score, name_db, start_db, al_size_db, strand_db,"
-                   " seq_size_db, name_q, start_q, al_size_q, strand_q,"
-                   " seq_size_q, block1, block2, block3, db_seq, q_seq"),
-        "MIQS" : ("score, name_db, start_db, al_size_db, strand_db,"
-                  " seq_size_db, name_q, start_q, al_size_q, strand_q,"
-                  " seq_size_q, block1, db_seq, q_seq"),
-    }
-    tab = subprocess.Popen(
-        "lastal -F15 {} {} -L 10 -m 70 -p {} -e 80 -f TAB".format(LAST_DB,
-                                                                  query_temp,
-                                                                  SCORING_MATRIX),
-        stdout=subprocess.PIPE,
-        shell=True)
-    ## MAF output contains alignment sequences
-    maf = subprocess.Popen(
-        "lastal -F15 {} {} -L 10 -m 70 -p {}  -e 80 -f MAF".format(LAST_DB,
-                                                                   query_temp,
-                                                                   SCORING_MATRIX),
-        stdout=subprocess.PIPE,
-        shell=True)
-
-    tab_pipe = tab.stdout
-    maf_pipe = maf.stdout
-    maf_pipe.readline()
-
-    seq_ids = []
-    dom_tmp = NamedTemporaryFile(delete=False)
-    with open(dom_tmp.name, "w") as dom_gff_tmp:
-        path = os.path.dirname(os.path.realpath(__file__))
-        version_string = get_version(path, LAST_DB)
-        write_info(dom_gff_tmp, version_string)
-    gff = open(dom_tmp.name, "a")
-    start = True
-    while True:
-        try:
-            with warnings.catch_warnings():
-                warnings.simplefilter("ignore")
-                sequence_hits = np.genfromtxt(
-                    line_generator(tab_pipe, maf_pipe, start),
-                    names=lastal_columns[SCORING_MATRIX],
-                    usecols=("score, name_q, start_q, al_size_q,"
-                             " strand_q, seq_size_q, name_db, db_seq,"
-                             " q_seq, seq_size_db, start_db, al_size_db"),
-                    dtype=None,
-                    comments=None)
-        except RuntimeError:
-            break
-        ## if there are no domains found
-        if sequence_hits.size is 0:
-            gff.write("##NO DOMAINS")
-            return [], [], [], []
-
-        ############# PARSING LASTAL OUTPUT ############################
-        sequence_hits = np.atleast_1d(sequence_hits)
-        score = sequence_hits['score'].astype("int")
-        seq_id = sequence_hits['name_q'][0].astype("str")
-        start_hit = sequence_hits['start_q'].astype("int")
-        end_hit = start_hit + sequence_hits['al_size_q'].astype("int")
-        strand = sequence_hits['strand_q'].astype("str")
-        seq_len = sequence_hits['seq_size_q'].astype("int")
-        domain_db = sequence_hits['name_db'].astype("str")
-        db_seq = sequence_hits['db_seq'].astype("str")
-        query_seq = sequence_hits['q_seq'].astype("str")
-        domain_size = sequence_hits['seq_size_db'].astype("int")
-        db_start = sequence_hits['start_db'].astype("int") + 1
-        db_end = sequence_hits['start_db'].astype("int") + sequence_hits[
-            'al_size_db'].astype("int")
-
-        [reverse_strand_idx, positions_plus, positions_minus
-         ] = hits_processing(seq_len, start_hit, end_hit, strand)
-        strand_gff = "+"
-        [mins_plus, maxs_plus, data_plus, indices_plus
-         ] = overlapping_regions(positions_plus)
-        [mins_minus, maxs_minus, data_minus, indices_minus
-         ] = overlapping_regions(positions_minus)
-        positions = positions_plus + positions_minus
-        indices_overal = indices_plus + [x + reverse_strand_idx
-                                         for x in indices_minus]
-        mins = mins_plus + mins_minus
-        maxs = maxs_plus + maxs_minus
-        data = data_plus + data_minus
-        ## process every region (cluster) of overlapping hits sequentially
-        count_region = 0
-        for region in indices_overal:
-            db_names = domain_db[np.array(region)]
-            db_starts = db_start[np.array(region)]
-            db_ends = db_end[np.array(region)]
-            scores = score[np.array(region)]
-            regions_above_threshold = [
-                region[i]
-                for i, _ in enumerate(region)
-                if max(scores) / 100 * THRESHOLD_SCORE < scores[i]
-            ]
-            ## sort by score first:
-            consensus = get_full_translation(
-                translation_alignments(
-                    query_seq=sortby(query_seq[regions_above_threshold], score[regions_above_threshold], True),
-                    start_hit=sortby(start_hit[regions_above_threshold], score[regions_above_threshold], True),
-                    end_hit=sortby(end_hit[regions_above_threshold], score[regions_above_threshold], True))
-                )
-
-            annotations = domain_annotation(db_names, CLASSIFICATION)
-            [score_matrix, classes_dict] = score_table(
-                mins[count_region], maxs[count_region], data[count_region],
-                annotations, scores, CLASSIFICATION)
-            ann_per_reg = score_matrix_evaluation(score_matrix, classes_dict,
-                                                  THRESHOLD_SCORE)
-            [domain_type, ann_substring, unique_annotations, ann_pos_counts
-             ] = group_annot_regs(ann_per_reg)
-            [best_idx, best_idx_reg] = best_score(scores, region)
-            annotation_best = annotations[best_idx_reg]
-            db_name_best = db_names[best_idx_reg]
-            db_starts_best = db_starts[best_idx_reg]
-            db_ends_best = db_ends[best_idx_reg]
-            if count_region == len(indices_plus):
-                strand_gff = "-"
-            if strand_gff == "+":
-                feature_start = min(start_hit[regions_above_threshold]) + 1
-                feature_end = max(end_hit[regions_above_threshold])
-            else:
-                feature_end = seq_len[region][0] - min(start_hit[regions_above_threshold])
-                feature_start = seq_len[region][0] - max(end_hit[regions_above_threshold]) + 1
-            create_gff3(domain_type, ann_substring, unique_annotations,
-                        ann_pos_counts, feature_start,feature_end,
-                        step, best_idx, annotation_best, db_name_best,
-                        db_starts_best, db_ends_best, strand_gff, score,
-                        seq_id, db_seq, query_seq, domain_size, positions, gff, consensus)
-            count_region += 1
-        seq_ids.append(seq_id)
-    os.unlink(query_temp)
-    gff.close()
-    dom_tmp.close()
-    ## if any sequence from input data was split into windows, merge and adjust the data from individual windows
-    if any("DANTE_PART" in x for x in seq_ids):
-        adjust_gff(OUTPUT_DOMAIN, dom_tmp.name, WIN_DOM, OVERLAP_DOM, step)
-    ## otherwise use the temporary output as the final domains gff
-    else:
-        shutil.copy2(dom_tmp.name, OUTPUT_DOMAIN)
-    os.unlink(dom_tmp.name)
-
-def  sortby(a, by, reverse=False):
-    ''' sort according values in the by list '''
-    a_sorted = [i[0] for i in
-                sorted(
-                    zip(a, by),
-                    key=lambda i: i[1],
-                    reverse=reverse
-                )]
-    return a_sorted
-
-
-def a2nnn(s):
-    s1 = "".join([c if c in ['/', '\\'] else c + c + c
-                  for c in s.replace("-", "")])
-    # collapse frameshifts (/)
-    s2 = re.sub("[a-zA-Z*]{2}//[a-zA-Z*]{2}", "//", s1)
-    s3 = re.sub("[a-zA-Z*]/[a-zA-Z*]", "/", s2)
-    return (s3)
-
-
-
-def rle(s):
-    '''run length encoding but max is set to 3 (codon)'''
-    prev = ""
-    count = 1
-    char = []
-    length = []
-    L = 0
-    for n in s:
-        if n == prev and count < (3 - L):
-            count += 1
-        else:
-            char.append(prev)
-            length.append(count)
-            L = 1 if prev == "/" else 0
-            prev = n
-            count = 1
-    char.append(prev)
-    length.append(count)
-    sequence = char[1:]
-    return sequence, length[1:]
-
-def get_full_translation(translations):
-    '''get one full length translation  from multiple partial
-    aligned translation '''
-    # find minimal set of alignements
-    minimal_set = []
-    not_filled_prev = len(translations[0])
-    for s in translations:
-        minimal_set.append(s)
-        # check defined position - is there only '-' character?
-        not_filled = sum([set(i) == {"-"} for i in  zip(*minimal_set)])
-        if not_filled == 0:
-            break
-        if not_filled == not_filled_prev:
-            # last added sequence did not improve coverage - remove it.
-            minimal_set.pop()
-        not_filled_prev = not_filled
-    # merge translations
-    final_translation = minimal_set[0]
-    # record positions of joins to correct frameshifts reportings
-    position_of_joins = set()
-    position_of_joins_rle = set()
-    if len(minimal_set) > 1:  # translation must be merged
-        for s in minimal_set[1:]:
-            s1 = re.search(r"-\w", final_translation)
-            s2 = re.search(r"\w-", final_translation)
-            if s1:
-                position_of_joins.add(s1.start())
-            if s2:
-                position_of_joins.add((s2.end() - 1))
-            final_translation = "".join(
-                [b if a == "-" else a for a, b in zip(final_translation, s)])
-    translation_rle = rle(final_translation)
-    cumsumed_positions = np.cumsum(translation_rle[1])
-    for p in position_of_joins:
-        position_of_joins_rle.add(sum(cumsumed_positions <= p))
-    # insert /\ when necessary
-    for p in position_of_joins_rle:
-        if translation_rle[0][p] not in ['/',"//","\\", "\\\\"]:
-            if translation_rle[1][p] == 2:
-                translation_rle[0][p] = translation_rle[0][p] + "/"
-            if translation_rle[1][p] == 1:
-                translation_rle[0][p] = "\\"
-    consensus = "".join(translation_rle[0])
-    return consensus
-
-
-# helper function for debugging
-def translation_alignments(query_seq, start_hit, end_hit):
-    pstart = min(start_hit)
-    pend = max(end_hit)
-    nnn = list()
-    for s, start, end in zip(query_seq, start_hit, end_hit):
-        nnn.append("-" * (start - pstart) + a2nnn(s) + "-" * (pend - end))
-    return (nnn)
-
-
-
-def adjust_gff(OUTPUT_DOMAIN, gff, WIN_DOM, OVERLAP_DOM, step):
-    ''' Original gff file is adjusted in case of containing cut parts 
-	- for consecutive sequences overlap is divided to half with first half 
-	of records(domains) belonging to the first sequence and second to the following one.
-	Duplicate domains going through the middle of the overlap are removed.
-	First and the last part (marked as LAST) of a certain sequence are 
-	handled separately as the are overlapped from one side only '''
-
-    seq_id_all = []
-    class_dict = defaultdict(int)
-    seen = set()
-    with open(OUTPUT_DOMAIN, "w") as adjusted_gff:
-        with open(gff, "r") as primary_gff:
-            start = True
-            for line in primary_gff:
-                if line.startswith("#"):
-                    adjusted_gff.write(line)
-                else:
-                    split_line = line.split("\t")
-                    classification = split_line[-1].split(";")[1].split("=")[1]
-                    if start:
-                        seq_id_all.append(split_line[0].split("_DANTE_PART")[
-                            0])
-                        start = False
-                    seq_id = split_line[0].split("_DANTE_PART")[0]
-                    if "DANTE_PART" in line:
-                        line_without_id = "\t".join(split_line[1:])
-                        part = int(split_line[0].split("_DANTE_PART")[1].split(
-                            ":")[0].split("_")[0])
-                        if seq_id != seq_id_all[-1]:
-                            seq_id_all.append(seq_id)
-
-                            ## first part of the sequence
-                        if part == 1:
-                            cut_end = WIN_DOM - OVERLAP_DOM / 2
-                            if int(split_line[3]) <= cut_end <= int(split_line[
-                                    4]):
-                                if line_without_id not in seen:
-                                    adjusted_gff.write("{}\t{}".format(
-                                        seq_id, line_without_id))
-                                    class_dict[classification] += 1
-                                    seen.add(line_without_id)
-                            elif int(split_line[4]) < cut_end:
-                                adjusted_gff.write("{}\t{}".format(
-                                    seq_id, line_without_id))
-                                class_dict[classification] += 1
-
-                                ## last part of the sequence
-                        elif "LAST" in split_line[0]:
-                            cut_start = OVERLAP_DOM / 2 + (part - 1) * step
-                            if int(split_line[3]) <= cut_start <= int(
-                                    split_line[4]):
-                                if line_without_id not in seen:
-                                    adjusted_gff.write("{}\t{}".format(
-                                        seq_id, line_without_id))
-                                    class_dict[classification] += 1
-                                    seen.add(line_without_id)
-                            elif int(split_line[3]) > cut_start:
-                                adjusted_gff.write("{}\t{}".format(
-                                    seq_id, line_without_id))
-                                class_dict[classification] += 1
-
-                        ## middle part of the sequence
-                        else:
-                            cut_start = OVERLAP_DOM / 2 + (part - 1) * step
-                            cut_end = WIN_DOM - OVERLAP_DOM / 2 + (part -
-                                                                   1) * step
-                            if int(split_line[3]) <= cut_start <= int(
-                                    split_line[4]) or int(split_line[
-                                        3]) <= cut_end <= int(split_line[4]):
-                                if line_without_id not in seen:
-                                    adjusted_gff.write("{}\t{}".format(
-                                        seq_id, line_without_id))
-                                    class_dict[classification] += 1
-                                    seen.add(line_without_id)
-                            elif int(split_line[3]) > cut_start and int(
-                                    split_line[4]) < cut_end:
-                                adjusted_gff.write("{}\t{}".format(
-                                    seq_id, line_without_id))
-                                class_dict[classification] += 1
-                    ## not divived
-                    else:
-                        if seq_id != seq_id_all[-1]:
-                            seq_id_all.append(seq_id)
-                        adjusted_gff.write(line)
-                        class_dict[classification] += 1
-
-
-def main(args):
-
-    t = time.time()
-
-    QUERY = args.query
-    LAST_DB = args.protein_database
-    CLASSIFICATION = args.classification
-    OUTPUT_DOMAIN = args.domain_gff
-    NEW_LDB = args.new_ldb
-    OUTPUT_DIR = args.output_dir
-    THRESHOLD_SCORE = args.threshold_score
-    WIN_DOM = args.win_dom
-    OVERLAP_DOM = args.overlap_dom
-    SCORING_MATRIX = args.scoring_matrix
-    configuration.SC_MATRIX = configuration.SC_MATRIX_SKELETON.format(SCORING_MATRIX)
-
-    if OUTPUT_DOMAIN is None:
-        OUTPUT_DOMAIN = configuration.DOMAINS_GFF
-    if os.path.isdir(LAST_DB):
-        LAST_DB = os.path.join(LAST_DB, configuration.LAST_DB_FILE)
-    if os.path.isdir(CLASSIFICATION):
-        CLASSIFICATION = os.path.join(CLASSIFICATION, configuration.CLASS_FILE)
-
-    if NEW_LDB:
-        subprocess.call("lastdb -p -cR01 {} {}".format(LAST_DB, LAST_DB),
-                        shell=True)
-
-    if OUTPUT_DIR and not os.path.exists(OUTPUT_DIR):
-        os.makedirs(OUTPUT_DIR)
-
-    if not os.path.isabs(OUTPUT_DOMAIN):
-        if OUTPUT_DIR is None:
-            OUTPUT_DIR = configuration.TMP
-            if not os.path.exists(OUTPUT_DIR):
-                os.makedirs(OUTPUT_DIR)
-        OUTPUT_DOMAIN = os.path.join(OUTPUT_DIR,
-                                     os.path.basename(OUTPUT_DOMAIN))
-    domain_search(QUERY, LAST_DB, CLASSIFICATION, OUTPUT_DOMAIN,
-                  THRESHOLD_SCORE, WIN_DOM, OVERLAP_DOM, SCORING_MATRIX)
-
-    print("ELAPSED_TIME_DOMAINS = {} s".format(time.time() - t))
-
-
-if __name__ == "__main__":
-    import argparse
-    from argparse import RawDescriptionHelpFormatter
-
-    class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter,
-                          argparse.RawDescriptionHelpFormatter):
-        pass
-
-    parser = argparse.ArgumentParser(
-        description=
-        '''Script performs similarity search on given DNA sequence(s) in (multi)fasta against our protein domains database of all Transposable element for certain group of organisms (Viridiplantae or Metazoans). Domains are subsequently annotated and classified - in case certain domain has multiple annotations assigned, classifation is derived from the common classification level of all of them. Domains search is accomplished engaging LASTAL alignment tool.
-		
-	DEPENDENCIES:
-		- python 3.4 or higher with packages:
-			-numpy
-		- lastal 744 or higher [http://last.cbrc.jp/]
-		- configuration.py module
-
-	EXAMPLE OF USAGE:
-		
-		./protein_domains_pd.py -q PATH_TO_INPUT_SEQ -pdb PATH_TO_PROTEIN_DB -cs PATH_TO_CLASSIFICATION_FILE
-		
-	When running for the first time with a new database use -nld option allowing lastal to create indexed database files:
-		
-		-nld True
-	
-		''',
-        epilog="""""",
-        formatter_class=CustomFormatter)
-
-    requiredNamed = parser.add_argument_group('required named arguments')
-    requiredNamed.add_argument(
-        "-q",
-        "--query",
-        type=str,
-        required=True,
-        help=
-        'input DNA sequence to search for protein domains in a fasta format. Multifasta format allowed.')
-    requiredNamed.add_argument('-pdb',
-                               "--protein_database",
-                               type=str,
-                               required=True,
-                               help='protein domains database file')
-    requiredNamed.add_argument('-cs',
-                               '--classification',
-                               type=str,
-                               required=True,
-                               help='protein domains classification file')
-    parser.add_argument("-oug",
-                        "--domain_gff",
-                        type=str,
-                        help="output domains gff format")
-    parser.add_argument(
-        "-nld",
-        "--new_ldb",
-        type=str,
-        default=False,
-        help=
-        "create indexed database files for lastal in case of working with new protein db")
-    parser.add_argument(
-        "-dir",
-        "--output_dir",
-        type=str,
-        help="specify if you want to change the output directory")
-    parser.add_argument(
-        "-M",
-        "--scoring_matrix",
-        type=str,
-        default="BL80",
-        choices=['BL80', 'BL62', 'MIQS'],
-        help="specify scoring matrix to use for similarity search (BL80, BL62, MIQS)")
-    parser.add_argument(
-        "-thsc",
-        "--threshold_score",
-        type=int,
-        default=80,
-        help=
-        "percentage of the best score in the cluster to be tolerated when assigning annotations per base")
-    parser.add_argument(
-        "-wd",
-        "--win_dom",
-        type=int,
-        default=10000000,
-        help="window to process large input sequences sequentially")
-    parser.add_argument("-od",
-                        "--overlap_dom",
-                        type=int,
-                        default=10000,
-                        help="overlap of sequences in two consecutive windows")
-
-    args = parser.parse_args()
-    main(args)
--- a/dante.xml	Fri Apr 03 07:27:59 2020 -0400
+++ b/dante.xml	Wed Jan 25 13:06:55 2023 +0000
@@ -1,10 +1,7 @@
-<tool id="dante" name="Domain based ANnotation of Transposable Elements - DANTE" version="1.1.0">
+<tool id="dante" name="Domain based ANnotation of Transposable Elements - DANTE" version="1.1.4">
   <description> Tool for annotation of transposable elements based on the similarity to conserved protein domains database. </description>
   <requirements>
-    <requirement type="package">last</requirement>
-    <requirement type="package">numpy</requirement>
-    <requirement type="package" version="1.0">rexdb</requirement>
-    <requirement type="set_environment">REXDB</requirement>
+    <requirement type="package">dante=0.1.4</requirement>
   </requirements>
   <stdio>
     <regex match="Traceback" source="stderr" level="fatal" description="Unknown error" />
@@ -12,7 +9,7 @@
   </stdio>
   <command>
     #if str($input_type.input_type_selector) == "aln"
-      python3 ${__tool_directory__}/parse_aln.py -a $(input_sequences) -f sequences.fasta -p sequences.profile
+      parse_aln.py -a $(input_sequences) -f sequences.fasta -p sequences.profile
       &amp;&amp;
       INPUT_SEQUENCES="sequences.fasta"
     #else    
@@ -21,13 +18,12 @@
     &amp;&amp;
 
 
-    python3 ${__tool_directory__}/dante.py --query \${INPUT_SEQUENCES} --domain_gff ${DomGff}
-	  --protein_database \${REXDB}/${db_type}_pdb
-	  --classification \${REXDB}/${db_type}_class
-    --scoring_matrix ${scoring_matrix}
+    dante --query \${INPUT_SEQUENCES} --domain_gff ${DomGff}
+	  --database $database
+      --scoring_matrix ${scoring_matrix}
 
     &amp;&amp;
-    python3 ${__tool_directory__}/dante_gff_output_filtering.py --dom_gff ${DomGff}
+    dante_gff_output_filtering.py --dom_gff ${DomGff}
     --domains_prot_seq ${Domains_filtered} --domains_filtered ${DomGff_filtered}
     --output_dir .
     --selected_dom All --th_identity 0.35
@@ -37,12 +33,12 @@
 
     #if str($input_type.input_type_selector) == "aln"
      &amp;&amp;
-     python3 ${__tool_directory__}/coverage2gff.py -p sequences.profile -g ${DomGff}
+     coverage2gff.py -p sequences.profile -g ${DomGff}
     #end if
 
     #if str($iterative) == "Yes"
     &amp;&amp;
-    python3 ${__tool_directory__}/dante_gff_output_filtering.py --dom_gff ${DomGff}
+   dante_gff_output_filtering.py --dom_gff ${DomGff}
     --domains_prot_seq domains_filtered.fasta --domains_filtered domains_filtered.gff
     --output_dir .
     --selected_dom All --th_identity 0.35
@@ -53,22 +49,22 @@
 
 
 
-    python3 ${__tool_directory__}/fasta2database.py domains_filtered.fasta domains_filtered.db
+    fasta2database.py domains_filtered.fasta domains_filtered.db
     domains_filtered.class
     &amp;&amp;
 
     lastdb -p domains_filtered.db domains_filtered.db
     &amp;&amp;
 
-    python3 ${__tool_directory__}/dante.py --query \${INPUT_SEQUENCES} --domain_gff ${DomGff2}
+    dante.py --query \${INPUT_SEQUENCES} --domain_gff ${DomGff2}
 	  --protein_database domains_filtered.db
 	  --classification domains_filtered.class
-    --scoring_matrix BL80
+      --scoring_matrix BL80
 
 
     #if str($input_type.input_type_selector) == "aln"
      &amp;&amp;
-     python3 ${__tool_directory__}/coverage2gff.py -p sequences.profile -g ${DomGff2}
+     coverage2gff.py -p sequences.profile -g ${DomGff2}
     #end if
     #end if
 
@@ -87,13 +83,12 @@
         <param name="input_sequences" type="data" format="txt" label="Sequences in ALN format (extracted from RepeatExplorer)"/>
       </when>
     </conditional>
-    <param name="db_type" type="select" label="Select taxon and protein domain database version (REXdb)" help="">
-      <options from_file="rexdb_versions.loc">
-        <column name="name" index="0"/>
-        <column name="value" index="1"/>
-      </options>
+    <param name="database" type="select" label="Select REXdb database">
+        <option value="Viridiplantae_v3.0" selected="true">Viridiplantae_v3.0</option>
+        <option value="Metazoa_v3.1" selected="true">Metazoa_v3.1</option>
+        <option value="Viridiplantae_v2.2" selected="true">Viridiplantae_v2.2</option>
+        <option value="Metazoa_v3.0" selected="true">Metazoa_v3.1</option>
     </param>
-
     <param name="scoring_matrix" type="select" label="Select scoring matrix">
       <option value="BL80" selected="true" >BLOSUM80</option>
       <option value="BL62">BLOSUM62</option>
--- a/dante_gff_output_filtering.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,361 +0,0 @@
-#!/usr/bin/env python3
-import sys
-import time
-import configuration
-import os
-import textwrap
-import subprocess
-from tempfile import NamedTemporaryFile
-from collections import defaultdict
-
-
-class Range():
-    '''
-    This class is used to check float range in argparse
-    '''
-
-    def __init__(self, start, end):
-        self.start = start
-        self.end = end
-
-    def __eq__(self, other):
-        return self.start <= other <= self.end
-
-    def __str__(self):
-        return "float range {}..{}".format(self.start, self.end)
-
-    def __repr__(self):
-        return "float range {}..{}".format(self.start, self.end)
-
-
-def check_file_start(gff_file):
-    count_comment = 0
-    with open(gff_file, "r") as gff_all:
-        line = gff_all.readline()
-        while line.startswith("#"):
-            line = gff_all.readline()
-            count_comment += 1
-    return count_comment
-
-
-def write_info(filt_dom_tmp, FILT_DOM_GFF, orig_class_dict, filt_class_dict,
-               dom_dict, version_lines, TH_IDENTITY, TH_SIMILARITY,
-               TH_LENGTH, TH_INTERRUPT, TH_LEN_RATIO, SELECTED_DOM):
-    '''
-	Write domains statistics in beginning of filtered GFF
-	'''
-    with open(FILT_DOM_GFF, "w") as filt_gff:
-        for line in version_lines:
-            filt_gff.write(line)
-        filt_gff.write(("##Filtering thresholdss: min identity: {}, min similarity: {},"
-                        " min relative alingment length: {}, max interuptions(stop or "
-                        "frameshift): {}, max relative alignment length: {}, selected"
-                        " domains: {} \n").format(TH_IDENTITY,
-                                                  TH_SIMILARITY,
-                                                  TH_LENGTH,
-                                                  TH_INTERRUPT,
-                                                  TH_LEN_RATIO,
-                                                  SELECTED_DOM))
-        filt_gff.write("##CLASSIFICATION\tORIGINAL_COUNTS\tFILTERED_COUNTS\n")
-        if not orig_class_dict:
-            filt_gff.write("##NO DOMAINS CLASSIFICATIONS\n")
-        for classification in sorted(orig_class_dict.keys()):
-            if classification in filt_class_dict.keys():
-                filt_gff.write("##{}\t{}\t{}\n".format(
-                    classification, orig_class_dict[
-                        classification], filt_class_dict[classification]))
-            else:
-                filt_gff.write("##{}\t{}\t{}\n".format(
-                    classification, orig_class_dict[classification], 0))
-        filt_gff.write("##-----------------------------------------------\n"
-                       "##SEQ\tDOMAIN\tCOUNTS\n")
-        if not dom_dict:
-            filt_gff.write("##NO DOMAINS\n")
-        for seq in sorted(dom_dict.keys()):
-            for dom, count in sorted(dom_dict[seq].items()):
-                filt_gff.write("##{}\t{}\t{}\n".format(seq, dom, count))
-        filt_gff.write("##-----------------------------------------------\n")
-        with open(filt_dom_tmp.name, "r") as filt_tmp:
-            for line in filt_tmp:
-                filt_gff.write(line)
-
-
-def get_file_start(gff_file):
-    count_comment = 0
-    lines = []
-    with open(gff_file, "r") as gff_all:
-        line = gff_all.readline()
-        while line.startswith("#"):
-            lines.append(line)
-            line = gff_all.readline()
-            count_comment += 1
-    return count_comment, lines
-
-
-def parse_gff_line(line):
-    '''Return dictionary with gff fields  and  atributers
-    Note - type of fields is strings
-    '''
-    # order of first 9 column is fixed
-    gff_line = dict(
-        zip(
-            ['seqid', 'source', 'type', 'start', 'end',
-             'score', 'strand', 'phase', 'attributes'],
-            line.split("\t")
-        )
-    )
-    # split attributes and replace:
-    gff_line['attributes'] = dict([i.split("=") for i in gff_line['attributes'].split(";")])
-    return gff_line
-
-def filter_qual_dom(DOM_GFF, FILT_DOM_GFF, TH_IDENTITY, TH_SIMILARITY,
-                    TH_LENGTH, TH_INTERRUPT, TH_LEN_RATIO, SELECTED_DOM,
-                    ELEMENT):
-    ''' Filter gff output based on domain and quality of alignment '''
-    [count_comment, version_lines] = get_file_start(DOM_GFF)
-    filt_dom_tmp = NamedTemporaryFile(delete=False)
-    with open(DOM_GFF, "r") as gff_all, open(filt_dom_tmp.name,
-                                             "w") as gff_filtered:
-        for _ in range(count_comment):
-            next(gff_all)
-        dom_dict = defaultdict(lambda: defaultdict(int))
-        orig_class_dict = defaultdict(int)
-        filt_class_dict = defaultdict(int)
-        seq_ids_all = []
-        xminimals = []
-        xmaximals = []
-        domains = []
-        xminimals_all = []
-        xmaximals_all = []
-        domains_all = []
-        start = True
-        for line in gff_all:
-            gff_line = parse_gff_line(line)
-            classification = gff_line['attributes']['Final_Classification']
-            orig_class_dict[classification] += 1
-            ## ambiguous domains filtered out automatically
-            if classification != configuration.AMBIGUOUS_TAG:
-                al_identity = float(gff_line['attributes']['Identity'])
-                al_similarity = float(gff_line['attributes']['Similarity'])
-                al_length = float(gff_line['attributes']['Relat_Length'])
-                relat_interrupt = float(gff_line['attributes']['Relat_Interruptions'])
-                db_len_proportion = float(gff_line['attributes']['Hit_to_DB_Length'])
-                dom_type = gff_line['attributes']['Name']
-                seq_id = gff_line['seqid']
-                xminimal = int(gff_line['start'])
-                xmaximal = int(gff_line['end'])
-                c1 = al_identity >= TH_IDENTITY
-                c2 = al_similarity >= TH_SIMILARITY
-                if (c1 and c2 and al_length >= TH_LENGTH and relat_interrupt <= TH_INTERRUPT and
-                        db_len_proportion <= TH_LEN_RATIO and
-                        (dom_type == SELECTED_DOM or SELECTED_DOM == "All") and
-                        (ELEMENT in classification)):
-                    gff_filtered.writelines(line)
-                    filt_class_dict[classification] += 1
-                    dom_dict[seq_id][dom_type] += 1
-                    if start:
-                        seq_ids_all.append(line.split("\t")[0])
-                        start = False
-                    if seq_id != seq_ids_all[-1]:
-                        seq_ids_all.append(seq_id)
-                        xminimals_all.append(xminimals)
-                        xmaximals_all.append(xmaximals)
-                        domains_all.append(domains)
-                        xminimals = []
-                        xmaximals = []
-                        domains = []
-                    xminimals.append(xminimal)
-                    xmaximals.append(xmaximal)
-                    domains.append(dom_type)
-    path = os.path.dirname(os.path.realpath(__file__))
-    write_info(filt_dom_tmp, FILT_DOM_GFF, orig_class_dict, filt_class_dict,
-               dom_dict, version_lines, TH_IDENTITY, TH_SIMILARITY,
-               TH_LENGTH, TH_INTERRUPT, TH_LEN_RATIO, SELECTED_DOM)
-    os.unlink(filt_dom_tmp.name)
-    xminimals_all.append(xminimals)
-    xmaximals_all.append(xmaximals)
-    domains_all.append(domains)
-    return xminimals_all, xmaximals_all, domains_all, seq_ids_all
-
-
-def get_domains_protseq(FILT_DOM_GFF, DOMAIN_PROT_SEQ):
-    ''' Get the translated protein sequence of original DNA seq for all the filtered domains regions 
-		The translated sequences are taken from alignment reported by LASTAL (Query_Seq attribute in GFF)	
-	'''
-    count_comment = check_file_start(FILT_DOM_GFF)
-    with open(FILT_DOM_GFF, "r") as filt_gff:
-        for comment_idx in range(count_comment):
-            next(filt_gff)
-        with open(DOMAIN_PROT_SEQ, "w") as dom_prot_file:
-            for line in filt_gff:
-                attributes = line.rstrip().split("\t")[8]
-                positions = attributes.split(";")[3].split("=")[1].split(":")[
-                    -1].split("[")[0]
-                dom = attributes.split(";")[0].split("=")[1]
-                dom_class = attributes.split(";")[1].split("=")[1]
-                seq_id = line.rstrip().split("\t")[0]
-                prot_seq_align = line.rstrip().split("\t")[8].split(";")[
-                    6].split("=")[1]
-                prot_seq = prot_seq_align.translate({ord(i): None
-                                                     for i in '/\\-'})
-                header_prot_seq = ">{}:{} {} {}".format(seq_id, positions, dom,
-                                                        dom_class)
-                dom_prot_file.write("{}\n{}\n".format(
-                    header_prot_seq, textwrap.fill(prot_seq,
-                                                   configuration.FASTA_LINE)))
-
-
-def main(args):
-
-    t = time.time()
-
-    DOM_GFF = args.dom_gff
-    DOMAIN_PROT_SEQ = args.domains_prot_seq
-    TH_IDENTITY = args.th_identity
-    TH_LENGTH = args.th_length
-    TH_INTERRUPT = args.interruptions
-    TH_SIMILARITY = args.th_similarity
-    TH_LEN_RATIO = args.max_len_proportion
-    FILT_DOM_GFF = args.domains_filtered
-    SELECTED_DOM = args.selected_dom
-    OUTPUT_DIR = args.output_dir
-    # DELETE : ELEMENT = args.element_type.replace("_pipe_", "|")
-    ELEMENT = args.element_type
-
-    if DOMAIN_PROT_SEQ is None:
-        DOMAIN_PROT_SEQ = configuration.DOM_PROT_SEQ
-    if FILT_DOM_GFF is None:
-        FILT_DOM_GFF = configuration.FILT_DOM_GFF
-
-    if OUTPUT_DIR and not os.path.exists(OUTPUT_DIR):
-        os.makedirs(OUTPUT_DIR)
-
-    if not os.path.isabs(FILT_DOM_GFF):
-        if OUTPUT_DIR is None:
-            OUTPUT_DIR = os.path.dirname(os.path.abspath(DOM_GFF))
-        FILT_DOM_GFF = os.path.join(OUTPUT_DIR, os.path.basename(FILT_DOM_GFF))
-        DOMAIN_PROT_SEQ = os.path.join(OUTPUT_DIR,
-                                       os.path.basename(DOMAIN_PROT_SEQ))
-
-    [xminimals_all, xmaximals_all, domains_all, seq_ids_all] = filter_qual_dom(
-        DOM_GFF, FILT_DOM_GFF, TH_IDENTITY, TH_SIMILARITY, TH_LENGTH,
-        TH_INTERRUPT, TH_LEN_RATIO, SELECTED_DOM, ELEMENT)
-    get_domains_protseq(FILT_DOM_GFF, DOMAIN_PROT_SEQ)
-
-    print("ELAPSED_TIME_DOMAINS = {} s".format(time.time() - t))
-
-
-if __name__ == "__main__":
-    import argparse
-    from argparse import RawDescriptionHelpFormatter
-
-    class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter,
-                          argparse.RawDescriptionHelpFormatter):
-        pass
-
-    parser = argparse.ArgumentParser(
-        description=
-        '''The script performs DANTE's output filtering for quality and/or extracting specific type of protein domain or mobile elements of origin. For the filtered domains it reports their translated protein sequence of original DNA.
-		WHEN NO PARAMETERS GIVEN, IT PERFORMS QUALITY FILTERING USING THE DEFAULT PARAMETRES (optimized for Viridiplantae species)
-		
-		INPUTS:
-			- GFF3 file produced by protein_domains.py OR already filtered GFF3
-			
-			FILTERING OPTIONS:
-				> QUALITY: - Min relative length of alignemnt to the protein domain from DB (without gaps)
-				   - Identity 
-				   - Similarity (scoring matrix: BLOSUM82)
-				   - Interruption in the reading frame (frameshifts + stop codons) per every starting 100 AA
-				   - Max alignment proportion to the original length of database domain sequence 
-				> DOMAIN TYPE: choose from choices ('Name' attribute in GFF)
-				Records for ambiguous domain type (e.g. INT/RH) are filtered out automatically
-				
-				> MOBILE ELEMENT TYPE:
-				arbitrary substring of the element classification ('Final_Classification' attribute in GFF)
-				
-		OUTPUTS:
-			- filtered GFF3 file
-			- fasta file of translated protein sequences (from original DNA) for the aligned domains that match the filtering criteria 
-		
-	DEPENDENCIES:
-		- python 3.4 or higher
-		> ProfRep modules:
-			- configuration.py 
-
-	EXAMPLE OF USAGE:
-		Getting quality filtered integrase(INT) domains of all gypsy transposable elements:
-		./domains_filtering.py -dom_gff PATH_TO_INPUT_GFF -pdb PATH_TO_PROTEIN_DB -cs PATH_TO_CLASSIFICATION_FILE --selected_dom INT --element_type Ty3/gypsy 
-
-		''',
-        epilog="""""",
-        formatter_class=CustomFormatter)
-    requiredNamed = parser.add_argument_group('required named arguments')
-    requiredNamed.add_argument("-dg",
-                               "--dom_gff",
-                               type=str,
-                               required=True,
-                               help="basic unfiltered gff file of all domains")
-    parser.add_argument("-ouf",
-                        "--domains_filtered",
-                        type=str,
-                        help="output filtered domains gff file")
-    parser.add_argument("-dps",
-                        "--domains_prot_seq",
-                        type=str,
-                        help="output file containg domains protein sequences")
-    parser.add_argument("-thl",
-                        "--th_length",
-                        type=float,
-                        choices=[Range(0.0, 1.0)],
-                        default=0.8,
-                        help="proportion of alignment length threshold")
-    parser.add_argument("-thi",
-                        "--th_identity",
-                        type=float,
-                        choices=[Range(0.0, 1.0)],
-                        default=0.35,
-                        help="proportion of alignment identity threshold")
-    parser.add_argument("-ths",
-                        "--th_similarity",
-                        type=float,
-                        choices=[Range(0.0, 1.0)],
-                        default=0.45,
-                        help="threshold for alignment proportional similarity")
-    parser.add_argument(
-        "-ir",
-        "--interruptions",
-        type=int,
-        default=3,
-        help=
-        "interruptions (frameshifts + stop codons) tolerance threshold per 100 AA")
-    parser.add_argument(
-        "-mlen",
-        "--max_len_proportion",
-        type=float,
-        default=1.2,
-        help=
-        "maximal proportion of alignment length to the original length of protein domain from database")
-    parser.add_argument(
-        "-sd",
-        "--selected_dom",
-        type=str,
-        default="All",
-        choices=[
-            "All", "GAG", "INT", "PROT", "RH", "RT", "aRH", "CHDCR", "CHDII",
-            "TPase", "YR", "HEL1", "HEL2", "ENDO"
-        ],
-        help="filter output domains based on the domain type")
-    parser.add_argument(
-        "-el",
-        "--element_type",
-        type=str,
-        default="",
-        help="filter output domains by typing substring from classification")
-    parser.add_argument(
-        "-dir",
-        "--output_dir",
-        type=str,
-        default=None,
-        help="specify if you want to change the output directory")
-    args = parser.parse_args()
-    main(args)
--- a/dante_gff_output_filtering.xml	Fri Apr 03 07:27:59 2020 -0400
+++ b/dante_gff_output_filtering.xml	Wed Jan 25 13:06:55 2023 +0000
@@ -1,11 +1,16 @@
-<tool id="domains_filter" name="Protein Domains Filter" version="1.0.1">
+<tool id="domains_filter" name="Protein Domains Filter" version="1.1.4">
   <description> Tool for filtering of gff3 output from DANTE. Filtering can be performed based domain type and alignment quality. </description>
-  <stdio>
+    <requirements>
+        <requirement type="package">dante=0.1.4</requirement>
+    </requirements>
+    <stdio>
+        <regex match="Traceback" source="stderr" level="fatal" description="Unknown error" />
+        <regex match="error" source="stderr" level="fatal" description="Unknown error" />
     <regex match="Traceback" source="stderr" level="fatal" description="Unknown error" />
     <regex match="error" source="stderr" level="fatal" description="Unknown error" />
   </stdio>
 <command>
-python3 ${__tool_directory__}/dante_gff_output_filtering.py --dom_gff ${DomGff} --domains_prot_seq ${dom_prot_seq} --domains_filtered ${dom_filtered} --selected_dom ${selected_domain} --th_identity ${th_identity} --th_similarity ${th_similarity} --th_length ${th_length} --interruptions ${interruptions} --max_len_proportion ${th_len_ratio} --element_type '${element_type}'
+dante_gff_output_filtering.py --dom_gff ${DomGff} --domains_prot_seq ${dom_prot_seq} --domains_filtered ${dom_filtered} --selected_dom ${selected_domain} --th_identity ${th_identity} --th_similarity ${th_similarity} --th_length ${th_length} --interruptions ${interruptions} --max_len_proportion ${th_len_ratio} --element_type '${element_type}'
 		
 </command>
 <inputs>
@@ -16,10 +21,20 @@
 	<param name="interruptions" type="integer" value="3" label="Interruptions [frameshifts + stop codons]" help="Tolerance threshold per every starting 100 amino acids of alignment sequence" />
 	<param name="th_len_ratio" type="float" value="1.2" label="Maximal length proportion" help="Maximal proportion of alignment length to the original length of protein domain from database (including indels)" />
 	<param name="selected_domain" type="select" label="Select protein domain type" >
-    <options from_file="select_domain.loc" >
-     <column name="name" index="0"/>
-     <column name="value" index="0"/>
-	</options>
+        <option value="All" selected="true">All</option>
+        <option value="GAG">GAG</option>
+        <option value="INT">INT</option>
+        <option value="PROT">PROT</option>
+        <option value="RH">RH</option>
+        <option value="RT">RT</option>
+        <option value="aRH">aRH</option>
+        <option value="CHDCR">CHDCR</option>
+        <option value="CHDII">CHDII</option>
+        <option value="TPase">TPase</option>
+        <option value="YR">YR</option>
+        <option value="HEL1">HEL1</option>
+        <option value="HEL2">HEL2</option>
+        <option value="ENDO">ENDO</option>
    </param>
    <param name="element_type" type="text" value="" label="Filter based on classification" help="You can use preset options or enter an  arbitrary string to filter a certain repetitive element type of any level. It must be a continuous substring in a proper format of Final_Classification attribute of GFF3 file. Classification levels are separated by | character. Filtering is case sensitive">
      <option value="Ty1/copia">Ty1/copia</option>
--- a/dante_gff_to_dna.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,191 +0,0 @@
-#!/usr/bin/env python3
-
-import argparse
-import time
-import os
-import textwrap
-from collections import defaultdict
-from Bio import SeqIO
-import configuration
-from dante_gff_output_filtering import parse_gff_line
-t_nt_seqs_extraction = time.time()
-
-
-def str2bool(v):
-    if v.lower() in ('yes', 'true', 't', 'y', '1'):
-        return True
-    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
-        return False
-    else:
-        raise argparse.ArgumentTypeError('Boolean value expected')
-
-
-def check_file_start(gff_file):
-    count_comment = 0
-    with open(gff_file, "r") as gff_all:
-        line = gff_all.readline()
-        while line.startswith("#"):
-            line = gff_all.readline()
-            count_comment += 1
-    return count_comment, line
-
-
-def extract_nt_seqs(DNA_SEQ, DOM_GFF, OUT_DIR, CLASS_TBL, EXTENDED):
-    ''' Extract nucleotide sequences of protein domains found by DANTE from input DNA seq.
-		Sequences are saved in fasta files separately for each transposon lineage.
-		Sequences extraction is based on position of Best_Hit alignment reported by LASTAL.
-		The positions can be extended (optional) based on what part of database domain was aligned
-        (Best_Hit_DB_Pos attribute).
-		The strand orientation needs to be considered in extending and extracting the sequence itself
-	'''
-    [count_comment, first_line] = check_file_start(DOM_GFF)
-    unique_classes = get_unique_classes(CLASS_TBL)
-    files_dict = defaultdict(str)
-    domains_counts_dict = defaultdict(int)
-    allSeqs = SeqIO.to_dict(SeqIO.parse(DNA_SEQ, 'fasta'))
-    with open(DOM_GFF, "r") as domains:
-        for comment_idx in range(count_comment):
-            next(domains)
-        seq_id_stored = first_line.split("\t")[0]
-        allSeqs = SeqIO.to_dict(SeqIO.parse(DNA_SEQ, 'fasta'))
-        seq_nt = allSeqs[seq_id_stored]
-        for line in domains:
-            gff_line = parse_gff_line(line)
-            elem_type = gff_line['attributes']['Final_Classification']
-            if elem_type == configuration.AMBIGUOUS_TAG:
-                continue  # skip ambiguous classification
-            seq_id = gff_line['seqid']
-            dom_type = gff_line['attributes']['Name']
-            strand = gff_line['strand']
-            align_nt_start = int(gff_line['attributes']['Best_Hit'].split(":")[
-                -1].split("-")[0])
-            align_nt_end = int(gff_line['attributes']['Best_Hit'].split(":")[
-                -1].split("-")[1].split("[")[0])
-            if seq_id != seq_id_stored:
-                seq_id_stored = seq_id
-                seq_nt = allSeqs[seq_id_stored]
-            if EXTENDED:
-                ## which part of database sequence was aligned
-                db_part = gff_line['attributes']['Best_Hit_DB_Pos']
-                ## db_part = line.split("\t")[8].split(";")[4].split("=")[1]
-                ## datatabse seq length
-                dom_len = int(db_part.split("of")[1])
-                ## start of alignment on database seq
-                db_start = int(db_part.split("of")[0].split(":")[0])
-                ## end of alignment on database seq
-                db_end = int(db_part.split("of")[0].split(":")[1])
-                ## number of nucleotides missing in the beginning
-                dom_nt_prefix = (db_start - 1) * 3
-                ## number of nucleotides missing in the end
-                dom_nt_suffix = (dom_len - db_end) * 3
-                if strand == "+":
-                    dom_nt_start = align_nt_start - dom_nt_prefix
-                    dom_nt_end = align_nt_end + dom_nt_suffix
-                ## reverse extending for - strand
-                else:
-                    dom_nt_start = align_nt_start - dom_nt_suffix
-                    dom_nt_end = align_nt_end + dom_nt_prefix
-                ## correction for domain after extending having negative starting positon
-                dom_nt_start = max(1, dom_nt_start)
-            else:
-                dom_nt_start = align_nt_start
-                dom_nt_end = align_nt_end
-            full_dom_nt = seq_nt.seq[dom_nt_start - 1:dom_nt_end]
-            ## for - strand take reverse complement of the extracted sequence
-            if strand == "-":
-                full_dom_nt = full_dom_nt.reverse_complement()
-            full_dom_nt = str(full_dom_nt)
-            ## report when domain classified to the last level and no Ns in extracted seq
-            if elem_type in unique_classes and "N" not in full_dom_nt:
-                # lineages reported in separate fasta files
-                if not elem_type in files_dict:
-                    files_dict[elem_type] = os.path.join(
-                        OUT_DIR, "{}.fasta".format(elem_type.split("|")[
-                            -1].replace("/", "_")))
-                with open(files_dict[elem_type], "a") as out_nt_seq:
-                    out_nt_seq.write(">{}:{}-{}|{}[{}]\n{}\n".format(
-                        seq_nt.id, dom_nt_start, dom_nt_end, dom_type,
-                        elem_type, textwrap.fill(full_dom_nt,
-                                                 configuration.FASTA_LINE)))
-                domains_counts_dict[elem_type] += 1
-    return domains_counts_dict
-
-
-def get_unique_classes(CLASS_TBL):
-    ''' Get all the lineages of current domains classification table to check if domains are classified to the last level.
-		Only the sequences of unambiguous and completely classified domains will be extracted.
-	'''
-    unique_classes = []
-    with open(CLASS_TBL, "r") as class_tbl:
-        for line in class_tbl:
-            line_class = "|".join(line.rstrip().split("\t")[1:])
-            if line_class not in unique_classes:
-                unique_classes.append(line_class)
-    return unique_classes
-
-
-def write_domains_stat(domains_counts_dict, OUT_DIR):
-    ''' Report counts of domains for individual lineages
-	'''
-    total = 0
-    with open(
-            os.path.join(OUT_DIR,
-                         configuration.EXTRACT_DOM_STAT), "w") as dom_stat:
-        for domain, count in domains_counts_dict.items():
-            dom_stat.write(";{}:{}\n".format(domain, count))
-            total += count
-        dom_stat.write(";TOTAL:{}\n".format(total))
-
-
-def main(args):
-
-    DNA_SEQ = args.input_dna
-    DOM_GFF = args.domains_gff
-    OUT_DIR = args.out_dir
-    CLASS_TBL = args.classification
-    EXTENDED = args.extended
-
-    if not os.path.exists(OUT_DIR):
-        os.makedirs(OUT_DIR)
-
-    domains_counts_dict = extract_nt_seqs(DNA_SEQ, DOM_GFF, OUT_DIR, CLASS_TBL,
-                                          EXTENDED)
-    write_domains_stat(domains_counts_dict, OUT_DIR)
-
-    print("ELAPSED_TIME_EXTRACTION = {} s\n".format(time.time() -
-                                                    t_nt_seqs_extraction))
-
-
-if __name__ == "__main__":
-
-    # Command line arguments
-    parser = argparse.ArgumentParser()
-    parser.add_argument('-i',
-                        '--input_dna',
-                        type=str,
-                        required=True,
-                        help='path to input DNA sequence')
-    parser.add_argument('-d',
-                        '--domains_gff',
-                        type=str,
-                        required=True,
-                        help='GFF file of protein domains')
-    parser.add_argument('-cs',
-                        '--classification',
-                        type=str,
-                        required=True,
-                        help='protein domains classification file')
-    parser.add_argument('-out',
-                        '--out_dir',
-                        type=str,
-                        default=configuration.EXTRACT_OUT_DIR,
-                        help='output directory')
-    parser.add_argument(
-        '-ex',
-        '--extended',
-        type=str2bool,
-        default=True,
-        help=
-        'extend the domains edges if not the whole datatabase sequence was aligned')
-    args = parser.parse_args()
-    main(args)
--- a/dante_gff_to_dna.xml	Fri Apr 03 07:27:59 2020 -0400
+++ b/dante_gff_to_dna.xml	Wed Jan 25 13:06:55 2023 +0000
@@ -1,20 +1,18 @@
-<tool id="domains_extract" name="Extract Domains Nucleotide Sequences" version="1.0.0">
+<tool id="domains_extract" name="Extract Domains Nucleotide Sequences" version="1.1.4">
   <description> Tool to extract nucleotide sequences of protein domains found by DANTE </description>
   <requirements>
-    <requirement type="package">biopython</requirement>
-    <requirement type="package" version="1.0">rexdb</requirement>
-    <requirement type="set_environment">REXDB</requirement>
+    <requirement type="package">dante=0.1.4</requirement>
   </requirements>
   <command>
     TEMP_DIR_LINEAGES=\$(mktemp -d) &amp;&amp;
-    python3 ${__tool_directory__}/dante_gff_to_dna.py --domains_gff ${domains_gff} --input_dna ${input_dna} --out_dir \$TEMP_DIR_LINEAGES
+    /mnt/raid/users/petr/workspace/dante/dante_gff_to_dna.py --domains_gff ${domains_gff} --input_dna ${input_dna} --out_dir \$TEMP_DIR_LINEAGES
 
     #if $extend_edges:
 	  --extended True
     #else:
 	  --extended False
     #end if
-	  --classification \${REXDB}/${db_type}_class
+	  --database ${database}
     &amp;&amp;
 
     cat \$TEMP_DIR_LINEAGES/*fasta > $out_fasta &amp;&amp;
@@ -23,12 +21,12 @@
   <inputs>
 	  <param format="fasta" type="data" name="input_dna" label="Input DNA" help="Choose input DNA sequence(s) to extract the domains from" />
 	  <param format="gff" type="data" name="domains_gff" label="Protein domains GFF" help="Choose filtered protein domains GFF3 (DANTE's output)" />
-	  <param name="db_type" type="select" label="Select taxon and protein domain database version (REXdb)" help="">
-      <options from_file="rexdb_versions.loc">
-        <column name="name" index="0"/>
-        <column name="value" index="1"/>
-      </options>
-    </param>
+	  <param name="database" type="select" label="Select REXdb database">
+        <option value="Viridiplantae_v3.0" selected="true">Viridiplantae_v3.0</option>
+        <option value="Metazoa_v3.1" selected="true">Metazoa_v3.1</option>
+        <option value="Viridiplantae_v2.2" selected="true">Viridiplantae_v2.2</option>
+        <option value="Metazoa_v3.0" selected="true">Metazoa_v3.1</option>
+      </param>
 
 	  <param name="extend_edges" type="boolean" truevalue="True" falsevalue="False" checked="True" label="Extend sequence edges" help="Extend extracted sequence edges to the full length of database domains sequences"/>
   </inputs>
--- a/dante_gff_to_tabular.xml	Fri Apr 03 07:27:59 2020 -0400
+++ b/dante_gff_to_tabular.xml	Wed Jan 25 13:06:55 2023 +0000
@@ -1,9 +1,9 @@
-<tool id="gff_to_tabular" name="Convert dante gff3 to tab delimited file" version="0.1.0" python_template_version="3.5">
+<tool id="gff_to_tabular" name="Convert dante gff3 to tab delimited file" version="0.1.4" python_template_version="3.5">
     <requirements>
-        <requirement type="package">R</requirement>
+        <requirement type="package">dante=0.1.4</requirement>
     </requirements>
     <command detect_errors="exit_code"><![CDATA[
-        Rscript ${__tool_directory__}/summarize_gff.R '$inputgff' '$output'
+        summarize_gff.R '$inputgff' '$output'
     ]]></command>
     <inputs>
       <param type="data" name="inputgff" format="gff3" />
--- a/dom_prot_seq.fa	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,57 +0,0 @@
->scaffold146.1|size86774:976-1289 RH Class_I|LTR|Ty1/copia|Bianca
-ISWRSTKQTIVAISSNHVELLAIHDTSRECVWLRFMIESIIMXXXXXXXXXXXXXXXXXX
-QLKE*YIKCDRTKHISPKFFFTQDLQKNGDVIIQQIRSNDNVVD
->scaffold146.1|size86774:6810-7049 PROT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand
-LVDSGASCNLMSKRVMKQMGIPDEKLEFLDATLYAFDRRTIIPAGKIQLPVTLGEEERTR
-SEMVEFIIVDMDLAYNAILG
->scaffold146.1|size86774:8801-9241 RT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat
-DFKGVNKHCQPDPFPLPHIDRLVDAVAGSSLLSTMDAYSGYHQISLAREDQAKSSFLTED
-GVFCYVVMPFGLRNAGATYQRLVNKIFADLLGKEMEIYVDDMIVKSLNDEDHIIYLSHCF
-EVCRTHRLKLNPAKCCFGVRSGKFLGY
->scaffold146.1|size86774:10819-11667 INT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand
-RDAMDCVRRCQSCQYFAPINRKPGAEITLTELPCPFDRWGIDILGPFPQSVRQRRFCIVA
-VEYHSKWIEAEAVASITSEAVKKFVMNNIIVRFGCPRVLVSDNGPQFISDKFATFCEEYG
-IQQRTSSVYHPQTNGQAEASNKIILHGLRRNLDSLGGSWPDQLPHVLWAYRTTPKSSTGE
-TPFSLVYGSEAVAPVESTIITPRIAAYMHTESANTEFRELDLDLLEERRNEVYGRVRKQQ
-RALRKRYNQRVRPRQFEKGDLILRSVESQGHKGKLDRAWEGPY
->scaffold146.1|size86774:14592-14828 PROT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila
-MVDLGASINLMPYSIYSALQLGPLQGTAIVIKLADRSNTHPEGVIEDVLVQVNNLVFPAD
-FYVLKMGKAENNDCPLLLG
->scaffold146.1|size86774:15420-15995 RT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila
-IYAISDSDWVSPVHVVPKKTGFTVERNKNGELVPKRVTNGWRVCIDYRKLNDATRKDHFP
-LPFIDQMLERLAGKKFYCFLDGYSGYNQVAIAPEDQEKTTFTCTYGTYAFRKMPFGLCNA
-PATFQRCMLSIFSEFTGKFIEVFMDDFTVYGDSFEGALENLEKVLQRCVEKKLVLNSEKC
-HFMVRQGIVLGH
->scaffold146.1|size86774:16188-16634 RH Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila
-FNQECQEAFNKLKSLLTAAPIIQPPNWELPFELMCDASNYALGAVLGQKIEGKRHVIYYA
-SKTLSEAQIHYTTTEKELLAIVYALEKFRSYLLGTKITVHSDHAALRHLLSKKESKPRLI
-RWILLLQEFDLEIKDRAGTENAVADNLSR
->scaffold146.1|size86774:24873-25481 INT Class_I|LTR|Ty1/copia|Bianca
-HDRLGHPGMIMMRKIIRTTSGHSLKNREILHPREYICTACAQGKLITRPSPVKIMNERIT
-FLERIQGDICGPIHPACGPFRYFIVLIDASSRWSHVSLLSTRNHAFARLLSQIIRLRAHF
-PDYPVKKIRLDNAAEFTSRTFNNYCLAMGIDVEHPVEYVHTQNGLAESLIKRLQLIARPL
-LMKSKLPVTCWGHAIIHASSLIR
->scaffold146.1|size86774:26322-27032 RT Class_I|LTR|Ty1/copia|Bianca
-WKDAIESELKSLNKRDVFGPVVRTPEGVQPVGYKWVFVRKRNDKGEISRYKARLVAQGFS
-QRPGIDYDETYSPVMDATTFRFLISLAIEYGLDLQLMDVVTAYLYGSLDCEIYMKIPEGF
-HMPERYSSEPRTDYAIKLNKSLYGLKQSGRMWYNRLSEYLIKEGYKNNLVCPCVFMKKFE
-NEFVIIAVYVDDINIVGTQKALLDAVNCLKREFEMKDLGRTKYCLGLQIEYLKNGIF
->scaffold146.1|size86774:27723-28124 RH Class_I|LTR|Ty1/copia|Bianca
-DAGYRSDPHNGRSQTGYVFLNKGAAISWRSTKQTIAATSSNHAELLAIHETSRECVWLRS
-MIESIYNACGLFTDKMPPTVLYEDNSACIIQLKEGYIKGDRTKHISPKFFFTHDLQKNGE
-VIIQQIRSSDNVAD
->scaffold146.1|size86774:10299-10658 aRH Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat
-WNMYIDGSTQSGAGVGVHYITPYGDWINLAVKLQFPATNNVAEYEALLAGMNFALSLGVT
-RLKTFSDSQLVVEQFSGHFQAKEPMLEAYKSRSQLLAAKFSEFSLEHIPRESNRAADSLA
->scaffold146.1|size86774:16812-17666 INT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila
-HASDYGGHFGPNRTARRILDVGFYWPSIFRDVYQFCRTCDACQRVGNITNRREMPQNYIL
-ANEIFDIWGLDFMGPFPQSQGNNYILVAVDYVSKWVEAIPTRTDDGKTVTEFLRKNIFTR
-YGVPKAIISDRGTHFCNSTMRAMMKKYNVIHKTTTAYHPQGNGQAEATNREIKSILEKVV
-NKKRSNWSQKLPDALWAYRTAYKTPIGTTPFRLIYGKHCNLPVGLEHKAYWAIREMNFEE
-GGDAELRQMQLQELDALRLEAYDNSRIYKERLKTYHDKKLLQQNF
->scaffold146.1|size86774:19976-20212 PROT Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila
-MVDLGASINLMPYYIYSALKLGSLQGTAIIIKLADRSETHPEGVVKDVLAQVNNLVFPAD
-FYVLKMGEAENDDCPLLLG
->scaffold146.1|size86774:28912-29124 PROT Class_I|LTR|Ty1/copia|Bianca
-CLVDSATTHTILKNMRYFTSFEKRDVNIATIVCEANIVEGSGRAVIVLPSGTHIRIDDAL
-YANKSRRNLLS
--- a/fasta2database.R	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,14 +0,0 @@
-library(Biostrings)
-input_fasta = commandArgs(T)[1]
-## for testing input_fasta="/mnt/raid/454_data/RE2_benchmark/REPET_annotation/Prunus_persica/DANTE_proteins_filtered.fasta"
-s = readAAStringSet(input_fasta)
-names_table = do.call("rbind", strsplit(names(s)," "))
-head(names_table)
-classification_table = paste(names_table[,1], gsub("|","\t",names_table[,3], fixed = TRUE), sep="\t")
-cat(unique(classification_table), sep="\n", file = paste(input_fasta, ".classification", sep = ""))
-
-new_fasta_names = paste("NA-", names_table[,2], "__", names_table[,1], sep="")
-
-names(s) = new_fasta_names
-
-writeXStringSet(s, filepath = paste(input_fasta, ".db",sep=''))
--- a/fasta2database.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-#!/usr/bin/env python3
-'''
-Helper script to create DANTE databese which can be used in second iteration
-'''
-import sys
-
-fasta_input = sys.argv[1]
-db_fasta_output_file = sys.argv[2]
-db_classification_file = sys.argv[3]
-classification_table = set()
-# fasta header will be reformatted to correct REXdb classification
-with open(fasta_input, 'r') as f, open(db_fasta_output_file, 'w') as out:
-    for line in f:
-        if line[0] == ">":
-            ## modify header
-            name, domain, classification = line.split(" ")
-            name_clean=name[1:].replace("-","_")
-            new_header = ">NA-{}__{}\n".format(domain, name_clean)
-            classification_string = "\t".join(classification.split("|"))
-            classification_table.add("{}\t{}".format(name_clean, classification_string))
-            out.write(new_header)
-        else:
-            out.write(line)
-with open(db_classification_file, 'w') as f:
-    f.writelines(classification_table)
--- a/parse_aln.py	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,137 +0,0 @@
-#!/usr/bin/env python3
-'''
-parse .aln file - output from cap3 program. Output is fasta file and
-profile file
-'''
-import argparse
-import re
-
-
-def parse_args():
-    '''Argument parsin'''
-    description = """
-    parsing cap3 assembly aln output
-    """
-
-    parser = argparse.ArgumentParser(
-        description=description,
-        formatter_class=argparse.RawTextHelpFormatter)
-    parser.add_argument('-a',
-                        '--aln_file',
-                        default=None,
-                        required=True,
-                        help="Aln file input",
-                        type=str,
-                        action='store')
-    parser.add_argument('-f',
-                        '--fasta',
-                        default=None,
-                        required=True,
-                        help="fasta output file name",
-                        type=str,
-                        action='store')
-    parser.add_argument('-p',
-                        '--profile',
-                        default=None,
-                        required=True,
-                        help="output file for coverage profile",
-                        type=str,
-                        action="store")
-    return parser.parse_args()
-
-
-def get_header(f):
-    aln_header = "    .    :    .    :    .    :    .    :    .    :    .    :"
-    contig_lead = "******************"
-    aln_start = -1
-    while True:
-        line = f.readline()
-        if not line:
-            return None, None
-        if line[0:18] == contig_lead:
-            line2 = f.readline()
-        else:
-            continue
-        if aln_header in line2:
-            aln_start = line2.index(aln_header)
-            break
-    contig_name = line.split()[1] + line.split()[2]
-    return contig_name, aln_start
-
-
-def segment_start(f):
-    pos = f.tell()
-    line = f.readline()
-    # detect next contig or end of file
-    if "********" in line or line == "" or "Number of segment pairs = " in line:
-        segment = False
-    else:
-        segment = True
-    f.seek(pos)
-    return segment
-
-
-def get_segment(f, seq_start):
-    if not segment_start(f):
-        return None, None
-    aln = []
-    while True:
-        line = f.readline()
-        if ".    :    .    :" in line:
-            continue
-        if "__________" in line:
-            consensus = f.readline().rstrip('\n')[seq_start:]
-            f.readline()  # empty line
-            break
-        else:
-            aln.append(line.rstrip('\n')[seq_start:])
-    return aln, consensus
-
-
-def aln2coverage(aln):
-    coverage = [0] * len(aln[0])
-    for a in aln:
-        for i, c in enumerate(a):
-            if c not in " -":
-                coverage[i] += 1
-    return coverage
-
-
-def read_contig(f, seq_start):
-    contig = ""
-    coverage = []
-    while True:
-        aln, consensus = get_segment(f, seq_start)
-        if aln:
-            contig += consensus
-            coverage += aln2coverage(aln)
-        else:
-            break
-    return contig, coverage
-
-def remove_gaps(consensus, coverage):
-    if "-" not in consensus:
-        return consensus, coverage
-    new_coverage = [cov for cons, cov in zip(consensus, coverage)
-                    if cons != "-"]
-    new_consensus = consensus.replace("-", "")
-    return new_consensus, new_coverage
-
-def main():
-    args = parse_args()
-    with open(args.aln_file, 'r') as f1, open(args.fasta, 'w') as ffasta, open(args.profile, 'w') as fprofile:
-        while True:
-            contig_name, seq_start = get_header(f1)
-            if contig_name:
-                consensus, coverage = remove_gaps(*read_contig(f1, seq_start))
-                ffasta.write(">{}\n".format(contig_name))
-                ffasta.write("{}\n".format(consensus))
-                fprofile.write(">{}\n".format(contig_name))
-                fprofile.write("{}\n".format(" ".join([str(i) for i in coverage])))
-            else:
-                break
-
-
-if __name__ == "__main__":
-
-    main()
--- a/summarize_gff.R	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,61 +0,0 @@
-## summarize hits
-output = commandArgs(T)[2] ## output table
-filepath = commandArgs(T)[1]  ## input dante gff3
-if (length(commandArgs(T))==2){
-  summarized_by = NA
-}else{
-  summarized_by = strsplit(commandArgs(T)[-(1:2)], split = ",")[[1]]
-}
-
-readGFF3fromDante = function(filepath){
-  dfraw=read.table(filepath, as.is = TRUE)
-  gff_df = dfraw[,1:8]
-  colnames(gff_df) = c("seqid", "source", "type", "start", "end", "score",
-                    "strand", "phase")
-  ## assume same order, same attributes names
-  ## TODO make ti more robust - order can change!
-  gffattr_list = lapply(
-    strsplit(dfraw[,9],split=c("=|;")),
-    function(x)x[c(FALSE,TRUE)]
-  )
-  ## some rows are not complete - in case of ambiguous domains
-  L = sapply(gffattr_list, length)
-  short = L  < max(L)
-  if (any(short)){
-    gffattr_list[short] = lapply(gffattr_list[short],function(x) c(x, rep(NA, 13 - length(x))))
-  }
-  gffattr = as.data.frame(do.call(rbind, gffattr_list), stringsAsFactors = FALSE)
-
-  ## get attributes names
-  attrnames =  strsplit(dfraw[1,9],split=c("=|;"))[[1]][c(TRUE,FALSE)]
-  colnames(gffattr) = attrnames
-
-  gff_df$Final_Classification = gffattr$Final_Classification
-  gff_df$Name = gffattr$Name
-  gff_df$Region_Hits_Classifications = gffattr$Region_Hits_Classifications
-  gff_df$Best_Hit = gffattr$Best_Hit
-  gff_df$Best_Hit_DB_Pos = gffattr$Best_Hir_DB_Pos
-  gff_df$DB_Seq = gffattr$DB_Seq
-  gff_df$Query_Seq = gffattr$Query_Seq
-  gff_df$Region_Seq = gffattr$Region_Seq
-  gff_df$Identity = as.numeric(gffattr$Identity)
-  gff_df$Similarity = as.numeric(gffattr$Similarity)
-  gff_df$Relat_Length = as.numeric(gffattr$Relat_Length)
-  gff_df$Relat_Interruptions = as.numeric(gffattr$Relat_Interruptions)
-  gff_df$Hit_to_DB_Length = as.numeric(gffattr$Hit_to_DB_Length)
-  return(gff_df)
-}
-
-gff = readGFF3fromDante(filepath)
-# summarized_by = c("Final_Classification", "Name", "seqid")
-# summarized_by = c("Final_Classification")
-
-
-if (is.na(summarized_by)){
-  ## export complete table
-  write.table(gff, file = output, row.names = FALSE, quote = FALSE, sep = "\t")
-}else{
-  ## export summary
-  tbl = data.frame(table(gff[, summarized_by]))
-  write.table(tbl, file = output, row.names = FALSE, quote = FALSE, sep = "\t")
-}
--- a/summarize_gff.xml	Fri Apr 03 07:27:59 2020 -0400
+++ b/summarize_gff.xml	Wed Jan 25 13:06:55 2023 +0000
@@ -1,13 +1,13 @@
-<tool id="gff_summary" name="Summarize gff3 output from DANTE" version="0.1.0" python_template_version="3.5">
+<tool id="gff_summary" name="Summarize gff3 output from DANTE" version="0.1.4" python_template_version="3.5">
     <requirements>
-        <requirement type="package">R</requirement>
+        <requirement type="package">dante=0.1.4</requirement>
     </requirements>
     <command detect_errors="exit_code"><![CDATA[
-        Rscript ${__tool_directory__}/summarize_gff.R '$inputgff' '$output' '$group'
+        summarize_gff.R '$inputgff' '$output' '$group'
     ]]></command>
     <inputs>
       <param type="data" name="inputgff" format="gff3" />
-      <param name="group" type="select" label="select categories to summarize" multiple="true" optional="false">
+      <param name="group" type="select" label="select categories to summarize" multiple="false" optional="false">
             <option value="Name">protein domain name</option>
             <option value="Final_Classification">Classification</option>
             <option value="seqid">Sequence ID</option>
--- a/test-data/GEPY_test_long_1.fa	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,378 +0,0 @@
->scaffold146.1|size86774
-CTAGAACACCAACACTAACAGGTACTACAGTCTGGAATCGGATATCTCGCATGTTAAAATATTCGGATGTGCTGTTTATA
-TTCTCATTCCCCTGTCTCAAAGAACAAAAGTGGGACCCCAACGTCGATTGAAAATTTATATTGGATTTGAATCTCCTACG
-ATTATACGATACCTTGAGCCNNNNNNNTTAACATGAGATGTGTTTACTGCTAGATTTGCAGATTGTTATTTTGATCAAAC
-CCATTTTCATAAGTCATTGAAATAAAATGAGAAATATAAAAAATTAAGTTGGCATAAGTCATCATTGACACATTACGATC
-CTCGTACTAAGGAATGTGAACTGGGAGTTTAGAAAATTCTTCATGTGCCGGAATAGACAATTCAATTGTCGAATGTGTTT
-AACGATGCGAATGGGGTTTTACAATCGCATATACTTGCAGCAAACACACCGATTAAGGTTGATGTTCCTGAAGAACGCAC
-GAAAATTGCGAACGAATCAAAAATGCGTTTGGAACGAGGTAGATCTATTGGTTCTAAGGATAAGAATCCTAGAACGAACA
-CCGAATGTTCAAATTGAGAATGTGTCGAATCCTCTGAGCACACATATGGTGGTTAGATCTTTGGATGTGAAAATGGATCC
-ATTCAGACCGCATGAGAACGATGAAGAAATATTAGGNNNNNGAAGTACCTTATCTTAGTGCAATCGGGGCATTGATGTAT
-CTTGCGAATAATACGAGGCCTAATATAGCATTTGCTGTTAATCTGTTGACAAGATGTAGTTCGTCGCCTACGAAAAGATA
-TTGGAAATGCGTGAAACATGTTCTTCGATANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
-NNNNNNNNNNNNNNTATTTCTTGGCGATCTACGAAACAAACTATCGTAGCTATCTCGTCAAATCACGTAGAATTATTAGC
-GATACATGACACAAGTCGTGAATGCGTCTGGTTGAGATTTATGATTGAAAGCATTTATAATGNNNNNNNNNNNNNNNNNN
-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTACAGTTGAAAGAATGATATATTAAATGTGACCGAACGAAACATAT
-TTCGCCAAAATTCTTTCTTTACACAAGATCTTCAAAAGAACGGAGATGTGATTATCCAGCAGATACGATCAAACGATAAT
-GTAGTAGATTTATTCACAAAACTGCTTCATACGGCAGGTTTTGAAAAGTTGATCTACAACAATGGCATTCGAAGATTGAA
-AGGTTTGGAGTGATGCAACCATCAGGGGTAGATGTTTTTGCTTGAAGACGGAGGGATGTAAAAAGATTATAGAAATGTAC
-TCTTTTTCATTCACTAAGGTTTTTATCCTTTTTCCTTAGTAAAGTTTTAACGAGTCATATCCTATAATGATAGACATCCA
-GGGTGGAGTATTACAAAACTATACTCGAAAATTAGATTGTGGATGTCTAGTTTACCAAGTTTCAAATAAAGACGGAAATA
-AATAGTACTATACACAAAATAATGCTATTCATGTGGGGCTCACGTCATTAATTTGTTTGAATTATAAAACGGTTCAGAAC
-CATCGCTCACCTATATAAATAGAGGTTATGTATGCTGAAATTATACAGATGAAATAATACAGATTTTATACTTTCATTTT
-CTTTATTCTTCTTCCGTTTCTACTATATCGAAGTAATTCATAGAGAAGTTGACGTAGAACGTCCGATTGAAGATTCAAGT
-AAATATTTTTCATTTATTGGTATTATTACTTTCCTAACAATTATTTGATTAAGCGCTATTGTTATTTGAGTCTCCTTCAT
-TCACACAAATTGCATTCGAGAAAAAGACATTTTTTGTCCCCTCAAATTTTTCAACTTTCAATTTTTTGTCCCTCGACTTT
-CAAAGAAGACACATTTGGTTTCTTAAATTTGATTTAAGGTCAATTTTGATTCATATTACAAAATTTTAATCATAAATTGA
-CTATTTTACCTGTAAATAAATATTTTTAAAAGTTGAATTTCATTTTCTTAGACTATTTAAATGTAATTTGACTTGATTGT
-GAGACTTATGAAGTGATTGTGAATCTTGTTTAAGACTTAAATATTCAATGTATGATAGAAAATTTATGTTGCAATCATAT
-TATTGTGGAAATCTTATATAACATTGACGTGGAAATTTTTGTGTCGTGCCAAAAATAATAACCTCACAACAACAATAATG
-GAAAATTTTCTGTGCTCATTTTTTGTCGTCTTCCTCCTCCTCTCTGCCGCTGCAAATGGCGACGACGTGTACACATCCTT
-CGTTAACTTCCTCGCAAAGAACGGCATTTCCAGCGCCGAAATCTCTTCCACCGTCTACTCTCCACAAAACACTAGCTTCC
-AGAACGTTCTACTCTCCGCCGTGAGGAACCGCCGGTTCAACCGATCCACCACCAGAAACCCAGCACGATTTTCGCGCCCA
-CGGCGGAATCCCACGTCAGCGCCGCCGTCATTTGCTCCAAGGAACTCGGGATTCAGCTCAAGATCCGCAGCGGCGGCCAC
-GACTTCGAGGGCATCTCCTACGTTTCTGCGGACGGCGGCGCGTTCGTCTTACTGGATGTGTCCAATTTCCGGTCGATTTC
-CGTCGATATTCCCGGCGAGACGGCGTGGGTCGGCCCCGGGGCTTATCTCGGAGAGCTGTACTACAGGATCTGGGAGAAGA
-GTAGCGTCCACGGTTTCCCCGCCGGGGTCCCGCCCTCCGTTCGATTTTCCAGAAAATGCTTCAAATCGGCGAAGTGGGGC
-TGACGTTTAACTCCTACGGCGGAGTAATGGACCGGATCCCGGAATCGGAAGCTCCCTTCCTCCTAAAGAACTTAAAACGG
-CTTATATCTCGCTATATAACGATATTTAAGGATTCGAAACCACTTATAATCTCTTTTCATGCCTTAAATGAGGTTATTTA
-AGGATCCAATTGCATTTAAAATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTTAACTATGCTAAAGAACTTATAAC
-GGCTTATATCTCGCTATATAACGATATTTAACCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATT
-TAAGGATCCAATTGCATTTAAAATGTCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATA
-ACGGCTTATATCTCGCTATATAACGATATTAAAGCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTA
-TTAAAGGATCCAATTGCATTTAGAATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTA
-TAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCTCCTAAAGAACTTAAAACGGCTTATATCTCGCTATATAAC
-GATATTTAAGGATTCGAAACCACTTATAATCTCTTTTCATGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAA
-ATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTTAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATA
-ACGATATTTAACCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTA
-AAATGTCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATA
-TAACGATATTAAAGCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTAAAGGATCCAATTGCATT
-TAGAATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTA
-TATAACGATATTAAAGCATCTCCTAAAGAACTTAAAACGGCTTATATCTCGCTATATAACGATATTTAAGGATTCGAAAC
-CACTTATAATCTCTTTTCATGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGCCTTATTATGCATCAAA
-TAGCTTCAAATAGCCTTAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTTAACCATCCGAA
-ACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGTCTTATTATGCATCA
-AATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCCG
-AAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTAAAGGATCCAATTGCATTTAGAATGCCTTATTATGCAT
-CAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATC
-GTTATATAATGCTATTTAACCATTCAAAACCACTTATAATCTCTTTCTAGGCCTCAAATAACGTTAATTAAGAATCCAAT
-TGCATTTAAAATGCCTAAATAGGCCTCAAATAGCTTGAAATAGTCTTACTCATTCTTAAATGTCTTATAACGGCTTATAT
-CATGCTATATAACGATATTTAACCATCCGAAATCACTTATAATCTCTTTTTAGGCCTCAAATAAGGTTAATTAAGGATCC
-AAATGCATTTAAAATGCCTTATTACGCCTCAAATAGCTTCAAATAACCATAAGTTATATAATGCTATTTAACCATTCAAA
-ACCACTTATAATCTCTTTCTAGGCCTCAAATAACGTTAATTAAGAATCCAATTGCATTTAAAATGCCTAAATAGGCCTCA
-AATAGCTTGAAATAGTCTTACTCATTCTTAAATGTCTTATAACGGCTTATATCATGCTATATAACGATATTTAACCATCC
-GAAATCACTTATAATCTCTTTTTAGGCCTCAAATAAGGTTAATTAAGGATCCAAATGCATTTAAAATGCCTTATTACGCC
-TCAAATAGCTTCAAATAACCATAAGTTATATAATGCTATTTAACCATTCAAAACCACTTATAATCTCTTTCTAGGCCTCA
-AATAACGTTAATTAAGAATCCAATTGCATTTAAAATGCCTAAATAGGCCTCAAATAGCTTGAAATAGTCTTACTCATTCT
-TAAATGTCTTATAACGGCTTATATCATGCTATATAACGATATTTAACCATCCGAAATCACTTATAATCTCTTTTTAGGCC
-TCAAATAAGGTTAATTAAGGATCCAAATGCATTTAAAATGCCTTATTACGCCTCAAATAGCTTCAAATAACCATAACCCA
-CCGGAAAGGCATCCTCTACAAGATTCAGTACTGGGTGAACTGGAACGAGGAAGGGCCGGCGGCGGAGAGCAATTACGTGA
-AGCAGGCGAGAGATCTCCACGATATCATGACGCCGTTCGTTTCGAGTGATCCGAGGGAAGCGTATCTGAACTACAGGGAT
-CTGGACATCGGAACCACCGACAACGGCGACGACAGCTACGGCCAGGGGTTGGTTTATGGGCTCAAGTATTTCAAGAATAA
-TTTCCACCGGTTGGTCCAAATCAAGACCCAAGTCGATCCCGACAACGTTTTCAGGAACGAACAGAGCATACCCACGTTCC
-CTAATCGCCGCAGCGTGCTCGTAAATTCCTTCTAAAAAGCTTTACCGGTGGGTTTGTTTCGCCGTTGTTTATGCACAGAA
-CAGAACTCAAATAAGTATTGCGTTATGCACAGCACAGCAGCAACATTCAGCAACGCTAATCAAATGAGAAGAAATAATTC
-AATCACTCNAAAAAAAAAAATGAAATATAGGCCGAGTATTTCGGGCCGAGCCCAATGGGCCAAGATTTTGTCCATTATGT
-AAGCCCGTGTTTTCTTTTGTTTACCAGGAGGGATTACTACCTACAATGGTCTGGAGAGTTGCATTCAGAACAACAGCAGA
-TCGTTCGGAAACGACGAGAGCGGTTGCATCACCACGACGGACTATTCATACGATGAGGATGACTCCACCTGCTGCTCTTC
-CAGCACNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGCAGCCGTACGACGGGAA
-GGCGAGCCAGTTATTGCCTGACGTGGAGGCGATGAAGGAGAAATTCGCGAAGCTGTTGCTCGGGGAGGATGTCAATGGAG
-GCACCAAGGGACTCTGCTCCGCCCTAGCTATATCCAACGCCATAGTAAACCTAGCAGGTACGGGAAACTTATCTGAAGGG
-CCCGCCCCCAAGATATGGGAGCAGAAGTCAAGGGGCTCGCCAAAGGACCGGGCGTAGAAAATCTGAGGAACGGTCAGACA
-AGTCACAGCCCGGCCCCGGACGGTCGGACAAGGGTAAGGAGAAAGTAGAGGCTAACCAAGGACCGATCCGGGGAGAAATC
-AACTACATCTCGGATTCCGGAAGCATGGGTCTGTCTCTGACCCACACTCGTCAGCACAGGGTATTCCTGGACGGACGGAA
-TCCAGAAGAAATCGCCTCACTTCGCCAAGGCCCGGAATCTCGGGCGAAATCTTGGGAAGTGAATCAAGTCATCTCGTTTT
-CTGACGAGGATTTTTCAGGGGTCATCTGGCCTCATCACGACCCGCTCATTATAGCGGGCGTCATTTCTGATTTTTTGGTG
-AGAAGGATACTTGTCGACAGTGGTGCCTCTTGCAACCTGATGAGCAAGAGGGTTATGAAGCAAATGGGTATACCGGACGA
-GAAGTTGGAATTCTTGGACGCTACCCTGTATGCTTTCGACCGAAGGACGATCATCCCAGCTGGAAAAATCCAACTTCCAG
-TCACTCTGGGTGAGGAAGAACGAACTCGGTCGGAAATGGTTGAATTCATCATTGTCGACATGGATCTGGCATACAACGCC
-ATTCTCGGTCGGTCGGGCTTGAATGCCTTCCGGGCAATTGCTTCAACTGCCCACCTGAAGATTAAATTCCCCACTCCCGC
-GGGCGTCGCTACAATATCGGTGGATCAAGGGACAGCCCGCGAATGCTTCAAAGTCTCTTGCCAGGACGGTGGACCTCCAC
-AGGAACCCGAACTGGCAAGCAGGGGGAAAGATGAGCCCGGTCCTTCACGAGGACCGACCGAGGAAGGCCGTCAGGGAACC
-CGACCGACCAAGAAACACAAGGTGGCGACAGTGGAACATGGCCCGATCGAGGACCAGCGTGAAGTCACGCATAACATGGA
-ACCAATCGGGTACAAGAACGTTTCACTATCCTCTTCCGACGGAAGGAAGAACGTCAAGATTGGGGTGCAAATGCCCCCAA
-ATATCGAAGAACAACTCATCCAGGTCTTGACAGAGTATCAAGACATCTTTGCTTGGGACATCTCCGAGGTCCCTGGAATT
-GATCGGTCACTGATGGAACATCGCATCAATACCGATCCTGAGGCCGTGCCCGTTCGACAAAAAAGGAGACGCTTCTCTCC
-AGAAAAAATCGAAGTCATACGGGCAGAGGTACAAAAATTGTTAAACGCGGGATTTATCCGCGAAATCCGATATGCTGAGT
-GGGTCGCGAACCCGGTCGTCGTCCCAAAACCTGGAGGAAAGTGGAGGGTGTGCATCGACTTTAAGGGCGTGAACAAGCAC
-TGCCAGCCCGATCCATTCCCCCTCCCTCATATCGACCGACTGGTGGACGCTGTAGCTGGAAGTTCCTTACTCAGCACAAT
-GGACGCGTATTCAGGATATCACCAGATCTCGTTGGCAACCTGCGAGGACTTCGTAAAAATTTGGACAACCTCGGAGGAAG
-CTGGCCCGACCATCTACCTCACGTGCTTTGGGCCTATCGGACTACGCCCAAATCTTCGACTGGAGAAACTCCGTTCTCGC
-TCGTATATGGATCCGAAGCGGTCGCACCAGTGGAGTCGACTATAATTACTCCACGAATCGCCGCTTACATGCATATGGAA
-TCCGCGAATACCGAGTTTCGAGAATTGGATCTGGATCTCCTAGAGGAAAGACGTAATGAGGTGTATGAACGAGTGCGAAA
-ACAACAGCGAGCCCTTCGGAAGCGTTACAATCAACGCGTAAGGCCTCGGCAGTTTGAGAAAGGAGATTTAGTTCTTCGGA
-GTGTGGAATCACAAGGCCATAAGGGAAAGCTCGACCGAGCTTGGGAAGGCCCTTATCGTGTCCACACAGTTATTGGCAAA
-GGGGCTTATCGATTGGAAACTTTGGACGGGGAGATCTTTCCTCGAACATGGAATATCGAGCACCTTCGGCCTTATTATCA
-GTAATACGTGACGATTAGTTGAGGCTAAGTCACGGGGCTCTAAGTTTCAAGAATAAATTTTTCATTATATGGAAAATTTA
-TTACAAGGAGTTCAAGAATAAATTTTTCATTACTTAGAAAAATTTATTACAACCTAGCAATTACAAAAAGTCAACTACAA
-GGAGGAGCAGGCAGATTTTCTTCTTGGGGAGGGGGCCGATCTTCTTCTGGAGGAGTGGGAGGTCGATCTTCTTCTTGAGG
-AGGGAGAGGCCGATCTTCTTCTGGTGGAGGAGGAGCAGGCTGATCTTCGGGCGGCTGAGGAATAGGAGTGCAATCCATGG
-GCTCGGGGCACGGCTCTTCGGGCTGCGGGGGAAGAACTTCCATTGCGACAGCCTCGGGCGGTCGGACCTCCGATGGCGCA
-GACTTCAAGGGCGTGAACAAGCACTGCCAGCCCGATCCATTCCCCCTCCCTCATATCGACCGACTGGTGGACGCAGTAGC
-TGGAAGTTCCCTGCTCAGCACCATGGACGCCTATTCGGGATATCACCAGATCTCACTGGCAAGGGAAGATCAAGCTAAGT
-CTTCTTTCCTCACTGAGGATGGTGTATTCTGCTATGTGGTGATGCCCTTCGGATTAAGGAACGCTGGGGCTACGTACCAG
-CGTTTGGTCAATAAAATCTTTGCCGATCTGCTCGGCAAAGAAATGGAGATCTATGTAGATGATATGATTGTTAAATCTCT
-GAATGACGAAGATCATATTATCTACTTGTCGCATTGTTTTGAGGTGTGCCGAACACATCGCCTCAAACTCAATCCAGCCA
-AGTGCTGCTTTGGTGTCCGGTCGGGCAAATTCCTGGGTTATCTCGTGTCCGAGAGGGGTGTTGAAGCCAACCCCCACCAA
-ATCCGGGCCATACTGGAAATGCAACCCCCGACCACGAAAAAGGAATTCCAAAGGTTGACGGGGTGCCTTGCAGCCCTGGG
-CAGATTTTTGTCAAGGGCGTCCGACCGAGCCCTGCCCTTCTTCAAAGTGCTTCGCAAAAACAGCACTCTGGACTGGACCG
-ATCAGTGCGATCGGGCCTTCAAAGAACTAAAGACTTATTTGGCATCTCCACCGCTGATTGTAAGTCCCACTCCAACCGAA
-ACGCTGGGGCTTTATTTAGCTGTGTCCGAGCATGCTGTCAGCTCGGTCCTTGTGGCAGAACGGGACGGGGTCCAGCACCC
-CGTATATTATGTGAGCCACACCCTTCTTCCAGCTGAATCTCGGTACAGCACGGTGGAGAAATTTGTTTTGGCCCTTCTAA
-AGTCGGTCGCGAAATTGCGACATTATTTTGAAAGCCGGAAAGTTATCGTGTACACTGATCAACCCATCAAGGCGGTGCTC
-GGGCAGTCCGATCACACCTCTTAAGAGTAATTTCCGCCCCCGGTTTTCTGTTGATCGGGGCGAAATACTGACAGGATTGG
-CATCGGCGCACACAATCCATAGCGTCTCTTAATAAGGTCGGCCAGTAATAGCCCGCCCGTTGAATACGAAGTGCAAGTGA
-CCGGGCACCCGGGTGGTTCCCACATAATCCACTGTGCACTTCTTCCAATACTTGAGCGGACCGAGCAGGGTCCAGACATA
-CCAAGAGAGCCCCGGTGACCGACCGCCTATATAATTTATTCTCAAGGAGAACATACCTTTTGGATTTTTCCTTGAGAGAT
-CGGGCATCGGACGAGTCAGGTGGGAGATTCCCCTTAGATAAATATTCCACAATGGGAGTCTTCCACGTTCCTTCTTCATG
-CCCGACCGGGCTGCAGGTGAATTCCACAGAATGAATATCTTCGGGGTTCTCAATAGTAGGTAACGTTACTGCTGGTTTCC
-CTTGGAGTTGTATAATGACACTGTCATCCCCAATTGTGGGGAAACTAGCAGCCAACCTAGCTAATGAGTCCGCAGCTCGA
-TTGCTTTCCCGAGGAATATGCTCCAGTGAGAATTCCGAGAATTTTGCAGCAAGTAACTGAGAACGGCTTTTGTAAGCCTC
-CAGCATTGGTTCCTTTGCCTGGAAATGACCAGAAAATTGTTCCACCACCAGTTGAGAGTCTGAAAATGTTTTTAAACGGG
-TGACTCCCAAACTTAGGGCGAAATTCATTCCAGCTAATAGCGCCTCATACTCTGCCACATTGTTTGTAGCAGGAAATTGG
-AGCTTTACAGCGAGGTTGATCCAATCTCCATAAGGCGTGATATAATGCACACCGACCCCAGCCCCAGATTGGGTCGAGCC
-ATCGATGTACATGTTCCAGGCTTCTTGTGACCGATCAGTTGACGGGACCGACCGCGTCATTTCCACCACGAAATCCGCTA
-AGGCCTGTCCTTTGATGGCCTTGCGGGGTTCGAAAGCTATGTCCATTGCACTGACCTTGATTGCCCATTTGGCGAGGCGC
-GAGGTATGATCCGTATTAAGAGACGCTATGGATTGTGTGCGCCGATGCCAATCCTGTCAGTATTTCGCCCCGATCAACAG
-AAAACCGGGGGCGGAAATCACTCTTACAGAATTACCTTGCCCGTTCGACCGATGGGGAATTGATATCCTTGGACCGTTCC
-CTCAATCGGTTCGGCAAAGGAGATTCTGTATTGTTGCGGTCGAATATCATTCGAAGTGGATCGAAGCTGAAGCTGTGGCA
-TCCATCACCTCCGAAGCTGTTAAGAAATTTGTCATGAATAACATCATTGTGCGATTCGGGTGTCCTCGAGTTCTCGTCTC
-GGACAACGGTCCACAATTTATATCGGACAAATTCGCAACCTTCTGTGAGGAATATGGAATTCAGCAGCGGACTTCGTCAG
-TATATCATCCACAAACAAACGGGCAAGCCGAGGCATCCAACAAGATCATCTTACATGGACTTCGCAGGAACTTGGATAGC
-CTCGGGGGAAGCTGGCCCGATCAACTGCCTCATGTGTTGTGGGCATATCGGACAACACCCAAGTCTTCAACTGGAGAAAC
-TCCATTCTCACTCGTTTATGGATCCGAAGCGGTCGCACCAGTGGAGTCGACTATAATTACTCCACGAATCGCCGCTTACA
-TGCATACGGAATCTGCAAATACCGAGTTTCGGGAATTGGATTTGGATCTCCTGGAGGAAAGACGTAACGAGGTGTATGGA
-CGAGTGCGAAAACAACAGCGAGCCCTTCGAAAGCGTTATAATCAACGCGTAAGGCCTCGGCAGTTTGAGAAAGGGGACTT
-AATTCTTCGAAGTGTGGAATCTCAGGGTCACAAAGGAAAGCTCGATCGAGCTTGGGAAGGACCTTACCGTATCCACACAG
-TTATTGGCAAAGGAGCGTGTTTTTATATTTTATATGTAAGGAATTTATTTGTAATAATGTAATAAAAATCGGGTATTTGG
-CATTTTATACCCCTTATCTTTCAATTTTTTGCAAAAAATACCCCTTATCTTTCATAATTGCAATTTATACCCCTTTTCTT
-TTGAATAGTGAGCAATTTGTATCCAACACCGTTAGATGACGTCATCATCCGTTAGATGACGTCATCATAAGGGGTATATT
-TTGCTACAAAAATAAAACATAAGGGGTATAAATTGCAATATCGTAAAAATTATTCCGTTAGTTTTAACGGCGTTGGACAT
-AAATTGCTCACTATTCAAAAGAAAAGGGATATAAATTGCAATTATGAAAGATAAGGGATATTTTTTGCAAAAAATTGAAA
-GATTAAGGGGCATAAAATGCAAAGAAGATGAAGAGAAAATGTCAAATACACTTTATTATTGGGTTAAATACATTTTATAC
-CCCTTATATTTTGGATTTTTACAAAAAATATCCATTTTCTTTCATAATTACAAAAAATATCCCTTTTGTTTTAAAATTGA
-ACAAATTATACTCAATCCGTTAGATGACGTCATCATCCGTTAAAATGACGTCATCATAAAGGGGTATAAATTGCAACAAA
-ATGAAACATAAATGGTATAAATTGCAACGCGTAAAATTATATTCCGTTAGTTTTAACGGCGTTGGGTATAATTTGTTTGA
-TTTTAAAACAAAAGGGATATTTTTTGTAATTTTAAAAGAAATGAGGTATATTTTGTAAAATTTTGAAAGAAATAGGGTAT
-AAAATGTATTTTCCCCTATTTTTATTTTAGAAAAATATTTTATTTCTTTTCAAAATTTACAAAAAATACTCATTTTCTTT
-CATAATTATAAAAAATACCCATTTTGTTTTAAAATCAAACAAATTATACCCAACGCCGTTAAAACTAACGGAATATAATT
-TTACGCGTTGCAATTTATACCATTTATGTTTCATTTTGTTGCAATTTATACCCCTTTATGATGACGTCATTTTAACGGAT
-GATGACATCATCTAACGGATTGAGTATAATTTGTTCAATTTTAAAATAAAAGGGGTATAATTTGTAATTATGAAAAAAAG
-AGAGTATATTTTGTAAAATTTTGAAAGAAAAATGATATAAAATGCATTTGTTACAATCAAAATCTTATTCTTATTTTTTT
-AAACAAAAATTAGGATATTATTAAAATACTGTTTTGTCTGTACGGAGATCGATTCGATTCGAACTGAGACGATTGCTGAT
-TTTGTGGATTTGTTGCAGCGACGGTGTTCGGTGAGCTGTGGAAACTGGAGCCGCTGTCGGAGGAGAAGAAGAGGAAGTGG
-AGGAGGGAGATGGATTGGCTTCTGTCTCCTACGAATTACATGGTCGAATTGGTGCCTGCAAAACAAAGCTGCAGCAACGG
-AGGGGTTTTGGAGGTAACAACTTTAATCATTTCAAATTCGATTTTGCAATTGATCTGAACTGATCAAATTGTCTAGATAA
-TGACGACCAAGNNGATCAGACATCCAAATGAATCTCCCAGCTCTCAAGAAACTCGATTCCATGCTTCTGGCAAGTGTTAC
-CTTTCAAACTTATGGTTTATTGAAACCCTAGCTCTGAAACACTGCATTTTTTTTCACCAGGAATCGCTCGATTCGATGGT
-GGATACCGAATTCTGGTACGCAGAAGAGGGGGGAAGCCAAGCAGAAGGAAGAAGCACAAGATGGTGGCTTCCTTCTCCGC
-AAGTACCTCCAAAAGGTCTCTCAGATACAGAAAGAAAGAGACTGCTACACCATGGTAGACTCACTTATCAAGTCTTCAAA
-GCTGCAAAAATGATCAACGAAAACGTCTTACTTGAAATGCCAATCCCGATCACCATCAAAGAAACTCTCCCTAAGGTGTA
-AACTCCCTTTTTTTATCCTCATTCGAATCGAATCCTGTCCTCACGGGCTTGATGATTTATTTCAGTTAGGAAAGTTGAGC
-CTCGGAGAGGAACTTTACAGATTACTCACCGAAGAATCCCTATCCAGGCAAGAGATCATGGAGCGTCTGAATCTGAAATC
-CGAACACNNNNNNNNNNNNNNNNNNNNNCCAGCCATATCCGAATGGCAGGTCAGAGTTTCTGAAGAACAACAAGCGGACA
-TCAAATCTCCGGCTCGGCCATCGTGGTCGTTTATAAGGGACCCTATCATCGAGATGGAGAAGACAGAGGTATTAGTCAAT
-CAAGCGGGGAGAAGATGGAAGGGAAGATAGATAAAGTGGAAGGAAGAATGGACAAGATGGAAACATCCAACGGGCAAATG
-GCTACAAAGATGGCGGAATTCGAAGCACAGTTGAAAGGGAAGTTGCCCTCACAATCTGTGATCAACCCGAGAGAAAATGT
-AAGCGCTGTAACGCTGAGGAGTGGAAAGGTTGCAGATGAAGCAATCCAGAAGAAGAGGAAATCGCCTAAAGAAGCAGCAA
-CAAAACCAGAGGATGAGAAGGAGGTCGAAGCTGCTGAACCAGTGACAGAACCCACTGCCAAGAAACAGAAAGAACCAGAG
-GTCGAGGTAACAAAGGAAAAATCTGTTATTAAACCTTACTATGAACTTCCACCTTTTCCAGGGAGGTTCAAGCTGGAGAA
-AAAGCAAGAGGAAGAGAAGGAGTTGATGAGACTATTCGGAAAAATTGAGCTGAACATACCGTTGGTCGAAGCAATCCAGA
-CGGTGCCACGTTATGCAAAGTTTCTGAAGGAATTGTGCACCACAAAGAAGAGGCTGAAAGGTAATGAATGCATTAATTTA
-AATGAACAGGTGTCAGCAATTTACAGCAACAAAGCACTGCCCGAGAAGTGCACGGATCCAGGTGTCTTCACCATTCCATG
-TGTGATCGGTAAAACAGAATTTAAACGAGCTATGGTGGACCTAGGAGCTTCTATAAATCTCATGCCTTATTCTATATATT
-CTGCACTTCAACTTGGACCATTGCAGGGAACGGCTATTGTCATAAAGTTGGCGGATAGATCAAACACTCACCCGGAAGGA
-GTTATCGAAGATGTGCTTGTACAGGTGAATAACTTGGTGTTTCCTGCAGATTTTTATGTACTGAAGATGGGGAAGGCAGA
-GAACAATGATTGTCCATTGCTACTGGGACGCCCATTTTTGAAAACCGCGAAGACAAAGATAGATGTAAATGATGGTACCA
-TGAGCATGGAATTCGATGGAGAGAAGGTACAATTCAATATCTATGAAGCTATGCGTTATCCTAGCGATGTAGGTATGGCG
-TGTATGATCGACACATTTGAGGAGCTGGAGTACGAGGTGATGGCAGTAACTGAAGCAGAGGAAATAATGAAAGAGTTAGA
-AGAAAACCGAGTAGAAGAGAATTGGCTGAAAGCAGTGACTGAAGCTGTGACGAAAGGGAAGACTGACCAAGGGGAATTGA
-AGCCACTGCCAGCAAATTTGAAATACGCATTTCTGGAAGGTAACTCAACTCTCCCTGTTATTATTGCTAATGATTTATCT
-CATGAACAGGAAGCTCAGTTACTGGAAATTCTGAAGAAGTATCGGAAAGCAATCGGATGGACACTAGATGACATTCACGG
-CATTGAAGCTGATGTGTGCCTGCATAGGATACTGATGAAAGATGATGCCAAACCAGTGCAACAATCACAGAGAAGAACCA
-ACCCGGTAATTTCAGAAGTCGTGAAGAAGGAGATAGAGAAGTGGCTCAAAGCTGGAATTATCTATGCTATTTCCGACAGT
-GATTGGGTAAGTCCGGTACATGTTGTTCCTAAGAAGACAGGTTTCACAGTGGAGAGGAACAAGAACGGAGAGCTGGTACC
-GAAGAGAGTAACAAACGGATGGAGAGTTTGCATTGACTACCGGAAGCTCAACGATGCAACTAGAAAGGATCACTTTCCAC
-TGCCGTTCATCGACCAAATGCTTGAGAGATTGGCAGGTAAAAAGTTTTATTGTTTTCTTGATGGATATTCAGGTTACAAC
-CAGGTTGCAATTGCACCGGAGGATCAAGAGAAGACCACGTTCACCTGCACCTATGGAACATATGCGTTTCGGAAGATGCC
-CTTTGGACTGTGCAATGCACCAGCAACATTCCAACGTTGCATGCTGAGCATTTTCTCAGAGTTTACAGGTAAATTTATTG
-AGGTTTTTATGGATGACTTCACTGTGTATGGTGACAGTTTCGAAGGAGCATTGGAAAATCTGGAGAAGGTACTGCAGAGG
-TGTGTAGAGAAGAAGTTGGTTTTGAACTCAGAGAAGTGCCACTTCATGGTGAGACAAGGAATTGTTTTGGGACACTTAAT
-ATCAGAGAAAGGCATCGAAGTGGATAAATCGAAAGTGGACACCATTCAAGGTATGACTTTTCCTACTGACGTGAAAGGTG
-TTCGTTCTTTTCTTGGCCATGCAGGATTTTACAGAAGGTTTATCAAGGATTTTTCGAAGATTGCACTGCCATTGAGCAAG
-CTGCTACAACATGAAGTGAAATTCGACTTCAACCAGGAATGCCAAGAAGCTTTTAACAAGCTGAAGTCACTGCTGACAGC
-AGCACCGATTATTCAACCGCCGAACTGGGAGCTTCCATTTGAGTTGATGTGTGATGCCAGCAACTATGCATTAGGAGCTG
-TCCTGGGGCAGAAGATTGAAGGGAAAAGACATGTCATTTATTATGCATCGAAAACACTGAGTGAAGCACAGATTCATTAC
-ACCACAACCGAGAAGGAGCTGCTAGCCATTGTTTATGCTCTGGAAAAATTCAGAAGCTACTTATTGGGAACGAAGATCAC
-AGTCCATTCTGATCATGCAGCTCTGAGACATTTACTTTCGAAGAAGGAATCGAAACCGAGACTAATTCGTTGGATTCTTT
-TGTTGCAGGAATTCGATTTGGAGATCAAGGACCGAGCTGGAACAGAGAATGCAGTAGCTGATAACTTGAGCAGAATCAGA
-ACTGAGGAAGAGCAGAAAACCAGAGTCCACGATGATTTTCCAGACGAGCAGATATTAGCGGTAATTACTGAACCCTGGTA
-TGCTGATTTAGCTAACTATCTTGTCAACAGGACAATGCCAAAGACCATGACCGAGAACGAGAAGCGGCAGATTCGAGCTC
-AAGCGCTCTCTGAAATTCTGTTGCAGCAGCTTCTTGTCGTGATAGGTCTTCAGTCTTTCTTTGTAGATCCTTGAATTATC
-ATAAGCTTCAAGCCTCAGAGCATCCAGCTCTTGCAACTGCATCTGTCTCAGCTCAGCATCGCCTCCTTCCTCGAAATTCA
-TCTCTCGGATTGCCCAATAAGCTTTGTGTTCCAGACCTACAGGTAGATTGCAATGTTTACCATAAATCAAACGAAATGGA
-GTAGTACCTATAGGTGTCTTGTATGCTGTTCTGTAAGCCCAGAGAGCATCTGGTAGCTTCTGGCTCCAATTCGATCTCTT
-TTTGTTCACCACTTTTTCCAGAATTGACTTGATCTCTCTGTTGGTTGCTTCTGCCTGTCCATTACCTTGTGGATGATACG
-CTGTTGTGGTCTTGTGGATCACATTATACTTCTTCATCATCGCTCTCATCGTGCTGTTACAGAAATGAGTGCCTCTGTCA
-CTGATGATGGCCTTTGGAACTCCATACCTCGTGAAAATATTCTTCCTCAGAAACTCAGTTACTGTCTTGCCATCATCGGT
-CCGTGTCGGTATTGCTTCAACCCATTTCGACACATAATCTACTGCCACCAGTATGTAGTTGTTCCCTTGAGATTGTGGAA
-ACGGTCCCATGAAATCCAGCCCCCATATATCGAAGATTTCGTTGGCCAGAATGTAATTCTGTGGCATCTCTCTTCTGTTG
-GTAATGTTTCCAACTCGCTGGCATGCATCACAAGTCCTGCAAAACTGATAAACGTCACGAAAAATAGATGGCCAGTAAAA
-ACCTACGTCCAGAATTCTTCTAGCCGTTCTGTTGGGTCCAAAGTGTCCTCCATAATCTGAAGCATGACATTCCTGCAAAA
-TTTTGTTAATCTCAGAATTATGAACACACTTACGAATCATCCCATCACTGCAATTCTTCCACAGATGCGGTTCTTCCCAG
-AAATAATATTTGGCCTGTGATCGAATCTGCCGCTTCTCGTTCTCGGTCATGGTCTTTGGCATTGCCCTGTTGACAAGATA
-GTTAGCTAAATCAGCATACCAGGGTTCAGTAATTACCGCTAATATCTGTTCATCTGGAAAATCGTCTTGCACTCTTGTTT
-TCTGCTTTTCCTCTGTTTTGATTCTGCTCCACAGAGTTCGACGTTGCGGAGCTTCCGGTCGCCGTGAGAGGATTTTTTTC
-TCCGTGCTGGTTTCCTGTCGCTGAAAAGGGAGAAAGAAAGCGACACGAAAACAGTAAGGGTTAGAGAAAAAAATAAAAAC
-TGATTCTGTACAGGCGATTTTTAGTGGCCCCATGTCGCGATGTGGACGTTTCTGGATCTTCATGGGCCGCCAAAAATTGG
-GCCTCTATTCCAGCGGGTTACTAAATCGCCTCAATTTTGCCTTAGGCAAAATTTCCCAACTCGTCTAGCTTTTCCTACAA
-AAATAAACTAAGTGCAGAAGAGGTTACTAAAAAGATAAAAGAAAAACTCCCTGCAGTCACTACTCTACTGAATGGGTTGC
-CTCCCATCAAGCGCCGCGTTTAACGTCTCCAGCACGACATATCCGTTCTCGCGCTCCTAATCATTCTCCCCGCCATCGTG
-GGATGCGGGTTCACCAAGTTCCAGTGAGCTCTCCATTTCCTGCTTAGGCATCTCAAAATATTTCTTAAGACGATGACCGT
-TTACCTTAAAATGTCTTCCACTCTCATCATCCAGCAACTCGAATACTCCATATGGAAAAACCTTTGTGATCTTGAACGGT
-CCCATCCATCTCGACTTCAATTTCCCTGGAAACAATCTAAGCTTGCTGTTAAATAACAGTACCTGCTGCCCCTCTCTGAA
-ATTCTGTTGCAGTATCTTCTTGTCATGGTAGGCCTTCAGTCTTTCTTTGTAAATCCTTGAATTATCATAAGCTTCAAGCC
-TCAGAGCATCCAGCTCTTGCAACTGCATCTGTCTCAGCTCAGCATCGCCTCCTTCTTCGAAATTCATCTCTCGGATTGCC
-CAGTTGCCTTGGGCAAATTTCCAACTCACCTAAGCTTTCCTACAAAAACAGACTAAGTACCGAAAAGGTTACTAAAAACT
-AAAAGAAATACTTCCTGCGGTTACTACTCTACTGAATGGGTTGCCTCCCATCAAGCGCCGCGTTTAACGTCTCCAGCACG
-ACTCAATCGTCTCACAGTCGCTACTCTCCCTCCCCGCCATCATGCGATGCGGGTTCACCAGATTCCAGTAAATTCTCCAC
-TCCCTGTTTCAGCAACTTAAAATATTTCTTAAATTGATGACCGTTTACCTCAAAGTGCTTTCCATTTCCATCCTCAAACA
-GTTTCAATACTTCATGTGGAAAGTTCTTCATGATTCCGAACGGTTCCATCCATCTCGGTATACCTGGAAACATTTTTAAC
-TTGCTGTCAAATATCAGTACCTGCTGTCTTTTCTTGCAATTCTGCTGCAGTATCCTCTTGGCATGGTGAGCCTTCAGTTT
-TTCTTTGTCAATCCTCGAATTGTCATATGCTTCCAGCTTCAAAGCGTCCATCTTCTGTAACTGCATCTGCTTCTGCTCAA
-CATCAGCTCCTTCTTCGTAATTCATCTCTCGGATTTCCCAGTAATTCTCGTGTTCCATCCCTACAAGCACTTTGCATTGT
-TTACCAAAATTCAAACCAATTGAAATGGTACCTCTCGGGTTGGTTCTCCTCTGTAATTGTTGGACTGGCTTAGCATCTTC
-CTCCAACAGCATTCTGTGCTGGCCTTCATCAGTGTCACTGCCTTGAATCTCATCTAGAATCCATCCGATTGCTTTTCCAG
-ACTTCTTCCAAATTTCCAGTAACTGAATTCCCTGTTTCAGAAATGAAATGTTAGTATTACTCACAAGTCTGCTGATAATG
-ACTTCAATTTCCCTCGGTTGGTTTTCCCTCTCGTTACAGCTTCAGTGACTGTTTTCAGCCAATTCTTTCCTCCTTGGTTT
-TCTTCTAATTCCCTTAACATCTCTTCTGCTTCAGTTGCTGCCATCACTTCGTTTTCCAGCTCCTCAAATGCATAGATCAT
-GCATACCGTACCTACATCGCTGGGAGAACGCATATCTTCATAAATATTAAATTGTACCTTCTCCCCATCGAACTCCATGC
-TCATGGTACCATTGTTAGCATCGATCTTCGTTTTTGCTGTTTTCAGAAATGGGCGTCCCAGCAGCAATGGACAATCATCG
-TTCTCTGCCTCCCCCATCTTCAACACATAAAAATCTGCAGGAAACACTAAGTTATTCACCTGCGCAAGCACGTCTTTGAC
-AACTCCTTCCGGGTGAGTTTCGGATCTGTCCGCCAACTTGATGATAATTGCCGTTCCCTGTAATGATCCAAGTTTCAGTG
-CAGAATATATATAATAAGGCATGAGATTTATTGAAGCTCCTAAATCCACCATAGCTCGTTTAAATTCTGTTTTACCAATC
-GTGCATGGAATGGGAAAAAATACAATTTTGGTCCCTCAAATTTTCAAAATTTCAATTTTTGGTCACTCAACTTTCAAAAA
-GACACATTTAGTCCCTTAATTTTGATTTAAGGTCAATTTTGGTCCATATTGCGAAATTTTAATCATAAATTGACTATTTT
-ACCCGTAAATAAATATTTTTTAAAGTTGAATCTCATTTTATGAGCCCGTTTAAATGAAAGTTGACTTGATTGAGTGACTC
-ATGCAAGTGATCGTGAATGTTGTTTAAGGGTGAAATAGTCAATTTATGATAAAAATTTTGCAATATGGACCGAAATTAAC
-CTTAAATCAAAATTAAGGGACTAAATGTGACTTTCTGAAAATTTAGTGATCAAAAATTAAAATTTGAAAAATTTGAGGAA
-TAAAAATGAATTTAATCCGAATTTATATTTTTGGTCTCTCAAATTTTTCAAATTTCAATTTTTGGTCCCTCAATTTTAAA
-AAAGACACATTTAGTCCCTCAACTTTGATTTAAGGTCAATTTTGGTCCCTATTGCGAAATTTTGATCATAAATTGACTAT
-ATTACCCACAAATAAACATTTTTTAAAGTTGAATCTCATTTTTTAACCCGTTTAAATGAAAGTTGACTTGATTGAGAGAC
-TCATGCAAGTGATCGTGAATGTTGTTTAAGGGTGAAATAGTCAATTTATGATAAAAATTTTGCAATAGGGACCGAAATTG
-ACCTTAAATCAAAATTAAGGGACTAAATATGTTTTTTTAAAAGTTGAGATACCAAAAATTGAAATTTGAAAAAATTGAGG
-AACTAAAAGGGTTAAAGACATTTTTAGTCCCTCAAATTTTTAAAATTTTAATTTTTGGTCCCTCAACTTTCAAAAAGACA
-CATTTAGTCCCTTAATTTTGATTTAAGGTCAATTTCGGTCCATATTGCAAAATTTTTATCATAAATTGACTATTTCACCC
-TTAAACAACATTTACGATCACTTGCATGAATCACTCAATCAAGTCAACTTTCATTTAAACGGGCTCATAAAATGAAATTC
-AACTTTAAAAAAATGTTTATTTACGGGTAAAATAGTCAATTTATGATTAAAATTTTGCAATATGGACCAAAATTGACCTT
-AAATCAAAATTAATTTACTAAATGTATATTTTTTAAAGTTGAGGAACCAAAAATTGAGAAGGATGGAGAAGAATGATCGG
-CAAAGAATTTATATCGGAGTTTAGGTTTGGAACCCTAGCTATCAATATGGACAAATTAGGTTTAAGACATTTTTAGTCCC
-TCAAGTTTTTCAAATTTCAATTTTTGGTCCCTCAACTTTCAAAAAGACACATTTAGTCCCTTAACTTTGATTTAAGGTCA
-ATTTTGGTCCATATTGCAAAATTTTTATCATAAATTGACTATTTCACCCTTAAACAACATTCACAATCACTTGCATGAGT
-CTCTCAATCAAGTCAAATTTCATTTAAATGGGCTTAGAAAATGAGATTCAACTTTGGAGAAAAAAAAAAATACATTTTTG
-GTCTCTCAAGTTTCTAAAATTTCAATTTTTGGTCCTTCAACTTTCAAAAATACACATTTAGTCCCTTAATTTTGATTTAA
-AGTCAATTTTGGTCCATATTGTAAAATTTTAATCATAAATTGACTATTTTACCCGTAAATAAACATTTTTTAAAGTTAAA
-TCTCATTTTATGAGTCCGTTTAAATGAAAGTTGACTTAATTAAATGAATTATGCAAGTAGTCGTGAATGTTGTTTAAGGG
-TGAAATAGTCAATTTATGATAAATATTTTGCAATATGGAGCGAAGTTGACCTTAAATAAAAATTAAGGAATTAGATACTC
-GTGAAGCAGATCAAAACAAAGTACCCCAATCTTCCCCTCACATTCATCGATGCCACGAAAATCCGATATGGCAAGGTAAA
-TGATAAAAGTATATATGAAAGTCAATCAAGAAAAAGATCACTAATTTTCTCATTACTTGCAGGACGTGGGGCACTCGATC
-CTCGAAGCGTACTCCCGAGTACTTGCCAACTTAGCATTCAGCATCCTCTCCCGGATAGGCGACGTTCTTCAGGAAGACAT
-CATGAGCAATCCGAACTCGCCCGTAGCCATGTCGCACCTCGTCGGGGCCAGAATCCCAGGAATATCGGATAGCCCCATGC
-TCGACAGGGTGAGGCACTCCCTCGTCCACCAGCTCAACGATGCGGACGGAGGTAAAACCGACGAGGACGAGGTGAACGCC
-GTCAGTTCCTCCGTGAGCGTAACTCCCAGCCGGAGCAGAGTGTGGTGCATCGGAAGAGAGGCCTGCAGAAGTTTATCCGC
-TCCGAATTCCCCAAACAGATGCATATAACAAAAAAACAGTACAACCGCGGCCGCATTCGACGCCATCATCGAGCAGCTTA
-TGTCGGAAAATCGAGGCTTCTCCTTAAGGTACCTTTTAAGGCTAACTAAATTCTTGGCTGACTAACTGGATGTAAACATC
-ATAAATGTCTGAACTATCTATTGAGTTATCGATCGCTTTCTTGATCAATACCTACATATATAATATATGAACCAGTTAAA
-GTTTACATCTAATGCTTTAAGTCTGTGCTTAACCAGCAGGGATCATCGGAATATAAAGAAAGCTAACCGGAAATATTCGA
-ATCGAGGAGCCAGGTAGTTATGGTTCTTGAGATCCTAAAGAACTTAAAACGGCTTATATCTCGCTATATAACGATATTTA
-AGGATTCGAAACCACTTATAATCTCTTTTCATGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGCCTTA
-TTATGCATCAAATAGCTTCAAATAGCCTTAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATT
-TAACCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGTCT
-TATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATA
-TTAAAGCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTAAATGAGGTTATTAAAGGATCCAATTGCATTTAGAATGC
-CTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGA
-TATTAAAGCATCTCCTAAAGAACTTAAAACGGCTTATATCTCGCTATATAACGATATTTAAGGATTCGAAACCACTTATA
-ATCTCTTTTCATGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGCCTTATTATGCATCAAATAGCTTCA
-AATAGCCTTAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTTAACCATCCGAAACCACTTA
-TAATCTCTTTTCAAGCCTTAAATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGTCTTATTATGCATCAAATAGCTT
-CAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCCGAAACCACT
-TATAATCTCTTTTCAAGCCTTAAATGAGGTTATTAAAGGATCCAATTGCATTTAGAATGCCTTATTATGCATCAAATAGC
-TTCAAATAGCCTAAACTATGCTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCTCCTAAAG
-AACTTAAAACGGCTTATATCTCGCTATATAACGATATTTAAGGATTCGAAACCACTTATAATCTCTTTTCATGCCTTAAA
-TGAGGTTATTTAAGGATCCAATTGCATTTAAAATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTTAACTATGCTAA
-AGAACTTATAACGGCTTATATCTCGCTATATAACGATATTTAACCATCCGAAACCACTTATAATCTCTTTTCAAGCCTTA
-AATGAGGTTATTTAAGGATCCAATTGCATTTAAAATGTCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATGCT
-AAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCCGAAACCACTTATAATCTCTTTTCAAGCCT
-TAAATGAGGTTATTAAAGGATCCAATTGCATTTAGAATGCCTTATTATGCATCAAATAGCTTCAAATAGCCTAAACTATG
-CTAAAGAACTTATAACGGCTTATATCTCGCTATATAACGATATTAAAGCATCCACAATAGTATGTGAAGCGAATATCGTT
-GAAGGCTCTGGCAGAGCTACGGTAGTATTACCATCGGGAACGCATATCAGAATTGATGATGCTTTATATGCTAATAAGTC
-TCGAAGGAATTTATTGAGTTTTAGAGATATTCGCCGAAATGGATATCATATTGAGACTTCGGACGAAAATGGTAAAGAAT
-ATCTTCACATTACTAAGATGGTGGCTGGAAAGAAATCGATTCTAGAAAAGATGCCCGCATACTCGTCAGGATTGTATCAT
-ACGTATATTGATACAGTGGAAGTGCATAATATAAACTTGAAGTTTATAAATCCTGATACGTTTCGAGTATGGCATGATCG
-ATTAGGCCATCCAGGGATGATTATGATGCGAAAAATTATTAGAACGACAAGCGGTCATTCATTGAAAAATCGAGAAATTT
-TGCATCCCAGAGAGTATATATGTACCGCTTGTGCTCAGGGAAAGTTAATTACTCGTCCGTCACCTGTAAAGATAATGAAT
-GAGAGAATTACGTTTTTGGAACGTATACAGGGTGACATATGTGGACCGATACATCCGGCTTGTGGACCATTCAGATATTT
-TATTGTATTAATTGACGCTTCGTCGAGATGGTCACATGTATCGTTGTTATCGACTCGTAATCATGCTTTTGCGAGACTGT
-TAAGTCAGATAATAAGATTACGAGCTCATTTCCCTGATTATCCGGTGAAGAAAATACGGTTGGATAATGCCGCTGAATTT
-ACGTCGCGGACGTTTAATAATTATTGTTTGGCTATGGGGATAGATGTTGAACATCCTGTAGAATATGTTCATACACAGAA
-TGGTCTGGCTGAATCTTTGATAAAGCGATTACAGTTAATCGCGAGACCATTATTGATGAAATCTAAGCTACCGGTTACTT
-GTTGGGGACATGCGATTATACATGCATCGTCACTTATACGGGTTAGACCAACAAGTTATTATGATTCATCCCCATTACAG
-TTGATTCAGGGTAAAGAACCGGATATCTCGCATCTCAGAATATTCGGATGTGCCGTTTATGTTCCCATTCCCCCGCCTCA
-AAGAACAAAAATGGGACCCCAACGTCGATTGGGAATTTATGTTGGGTTTGAATCTCCTACGATTATACGATACCTTGAGC
-CGTTAACAGGAGATGTATTTACTGCGAGGTTTGCAGATTGTTATTTTGACGAAACCCATTTTCCACCGTTAGGGGGAGAA
-AAGAAATTGAGAGAGGCTGAGAAAGATAGAAAATTGAGCTGGCATGAGCCATCATTGACACATTATGATCCTCGTACAAA
-GGAATGTGAACTGGAAGTTCAGAAAATTGTTCATGTGCAGGAACAGGCAATTCAATTGCCGAATGCATTTAACGATGCGA
-AAGGTGTTTTACAGTCGCATATACCTGCAGCAAACGCACCGATTAAAGTTGATGTTCCTGAAGAACGAACGGAAATTGCG
-AATGAATCTAAAATGCGTTTGAAACGAGGTAGACCTGTTGGTTCTAAGGATAAGAATCCTAGAACAAGAAGAACGAATCG
-AACACCGAATGTTCAGATTGAAAATGTGTCGAGAAATGAGGTTTCGACTGAGGTAGTTGAACCACAGGAAAATGAGGAAA
-TTTCTATCAATTATATATCGAATTCAGAACGGTGGGATAGAAGCAAAGTTGAGGTTGATGAAAACTTTGCAGAATATATA
-TCTTTCCATGTTATGAATGATCCTGAAGATCCTGAACCTAGAACAATGACTGAATGTCAGAAACGAGATGATTGGCCAAA
-ATGGAAAGATGCTATAGAAAGTGAGCTGAAATCTCTGAATAAGAGAGATGTTTTCGGACCTGTAGTTCGAACACCTGAAG
-GTGTACAACCGGTTGGTTATAAGTGGGTTTTTGTGAGAAAACGAAATGATAAAGGAGAAATATCTCGGTATAAGGCGAGA
-TTAGTAGCTCAAGGGTTTTCTCAAAGGCCAGGAATTGATTATGATGAAACCTATTCACCGGTTATGGATGCCACAACTTT
-CAGGTTTTTGATAAGTCTGGCGATTGAATATGGGCTTGATTTACAACTGATGGATGTTGTAACAGCATACTTATATGGGT
-CACTGGATTGTGAAATATATATGAAAATCCCTGAAGGGTTTCATATGCCTGAACGATATAGTTCTGAACCCCGTACCGAT
-TATGCGATTAAATTGAATAAATCCCTGTATGGATTAAAGCAGTCAGGACGAATGTGGTATAACCGTCTAAGTGAATACTT
-GATTAAAGAGGGTTATAAGAACAATTTGGTTTGTCCCTGTGTTTTTATGAAGAAATTCGAAAATGAGTTCGTGATCATCG
-CTGTGTATGTCGATGACATTAATATTGTGGGAACTCAGAAGGCATTATTGGATGCCGTGAACTGCTTGAAAAGGGAATTT
-GAAATGAAGGATTTGGGAAGAACGAAATATTGCCTTGGTTTGCAAATTGAATATTTGAAAAATGGGATTTTTCGTACCGA
-TTATGCTATTAAATTGAATAAATCCCTGTATGGATTAAAGCAGTCAGGACGAATGTGGTATAACCGTCTGAGTGAGTATC
-TGATCAAAGAAGGTTATAAAAACAATTTGGTTTGTCCTTGTGTTTTTATGAAGAATTTTGAAAATGAGTTCGTGATCATC
-GCTGTGTATGTCGATGACATTAATATTGTGGGAACTCAGAAGGCATTATTAGATGCTGTGAACTGCTTGAAAAGGGAATT
-TGAAATGAAGGATTTGGGAAGAACGAAATATTGCCTTGGTTTGCAAATTGAATATTTGAAAAATGGGATTTTTCTTCATC
-AGAATACGTATACCAAGAAGGTATTGAAACGTTTTTATATGGATTATTCACATCCTCTGAGCACACCTATGGTGGTTAGA
-TCTTTAGATGTGAAAACGGATCCATTCAGGCCACAGGAGAACGATGAAGAAATATTAGGTCCTGAAGTACCTTATCTTAG
-TGCAATCGGGGCATTAATGTATCTTGCGAATAATACGAGGCCTGACATTGCATTTGCTGTTAATCTGTTGGCAAGATATA
-GTTCATCGCCTACGAAAAGACATTGGAAAGGCGTGAAACATGTTCTTCGATATCTTCAAGGTACTACTGATAAGGGGTTG
-TATTATCAGAAAGATATGAAGTCAGAACTTATCGGGTATGCTGATGCTGGATATAGATCAGATCCACATAATGGGAGATC
-TCAGACAGGATATGTTTTCCTGAATAAAGGAGCTGCTATTTCTTGGCGATCTACGAAACAGACTATCGCAGCTACCTCGT
-CAAACCACGCAGAATTACTAGCGATACACGAAACAAGTCGTGAATGCGTTTGGTTGAGATCTATGATTGAAAGCATTTAT
-AATGCTTGTGGATTGTTTACAGATAAGATGCCTCCGACTGTATTATATGAAGATAATAGTGCATGTATTATACAGTTGAA
-AGAAGGATATATTAAGGGTGACAGAACGAAACATATTTCACCAAAATTCTTCTTTACACATGATCTTCAAAAGAACGGAG
-AGGTAATTATCCAGCAGATACGATCAAGCGATAATGTGGCAGATTTATTCACGAAACCACTCCCTACATCAACTTTTGAA
-AAGTTGATTTACAATATTGGAATCCGAAGGTTGAAGGATTTGGAGTGATGCAGTCATCAGGGGGAGATGTTTTTGACTGA
-GGACAAAGGGATGCAAGAAAATTATAGGAATGTACTCTTTTTCCTTCACTAAGGTTTTTATCCCATTGGGTTTTTCCTTA
-GTAAGGTTTTAACGAGGCATATCCTATAATGATAGACATCCAAGGGGGAGTGTTGTAAAACTATACACGAAAATCGGATT
-GTGGATGTCTATTATACCATATTTCAAATAAAGACGGAAATGCACAGTACTTACTATTCATGTGGGTCCCGCAGCATTAA
-ATTTATCAAATTATTGATTGTAAACGAACGGATGTAATCGATGATTGATGCCTATAAATATAGGCATGGTGCAGAATGAA
-TTTAAGCAGAACAAAATTTGAGCATAAATTTTTCTCTTCTTCTTCTCATTTCTTTTCTTGATTCAATAATACGCTGAAGG
-AATTTCTACAGAAGTTGACGTAGAACGTCCGATTGAAGATTCAAGTAAGTTTATGAATTATTCATCTTTTATTTCTTATT
-TTTCTAACACGTTATCAGCACGAAGTCTAACCAACTGAGTGCTTATATAATCTTGAAGATTATATATTATATGATATGAT
-CCCGCAGATCGTATGGTTGATTCGATGATCCAGAAGATTATTTGATTTAACTTCTTTACCATTTTCGTCTGAAGTCTCAA
-TATGATATCCATTTCGGCGAATATCTCTAAAACTCAATAAATTCCTTCGAGACTTATTCGCATATAATGCATCATCAATT
-CTGATATGCGTTCCCGATGGTAATACTATCACAGCTCTGCCGGAGCCTTCAACAATATTCGCTTCACATACAATTGTGGC
-AATATTTACATCCCGTTTTTCAAAACTAGTAAAATATCTCATGTTTTTCAAGATCGTATGCGTCGTTGCACTATCCACCA
-GACATTCATCACCCTCAGCCATGCTGGAAATAAACAATATATTTCATTATCAGTTCATGATACAATTTACAATTCGGCAT
-ACATAATACCAACAATAATGCCCAGAAATGTTAACAGCGTGGAAACAAAGACTGAAGCGTCTATGTTCTGGATCATCCAA
-ATATACCCAAAAATAAAAGTTACCATAAAAACTATAAAAACAAGATACTGAACAGAGGTGTTCATCTGGCTCAGAGATTT
-TGTAAAGAGATTTAGAAAAGAGAAGTTTTTAAGTGAAAAACCTTCTTGATAAAATCGTTATTTATACTGAGCCAAGTTAC
-CGACAATATCTGCGAAATCCAAGATTTTCGTTGAAAAAACATAACACCTTATTAAAATATTCAAAACACGCCGAATATTT
-TACAAAACACGCTGATAACATGCCGAATACAACATATTTATTTCAACCAGCATTATTAAATAGATAACTAAATCCTTCGT
-CTGGATCACGTGGACGTGGTCGTGGCCGAGGTCGTTACTATGATTATGGTCGTGAAAAGAACAAGTATATCTGGAAGAAA
-CCTGCCGTTGTCAAAGAGGTAAATGTGAAAAATGATCAGGGTGACCAGAATACTTGTTACAGATGTGGAAAGGAAGGACA
-CTGGTCACGGACGTGTCGAACGCCTAAATCACTTGTCGACCTTTATCAGCGAGCGAAGAAAATTGAGGAAAAGGGGAAGA
-AAAAGGAGACGAATAACGCTGAAGCTGAGACGTATAACGGAGAAGTCAATATGACTAAGCTGGATGTCGCAGATTTCCTG
-GCTGATCCAGACGAAGGATTTAGTTATCTATTTAATAATGCTGGTTGAAAGAAATTGTTGTATTCGGCATGTTATCAGCG
-TGTTTTGTAAAATATTCGGCGTGTTTTGAATATTTTAATAAAATGTTATGTTTTTCAACGAAAATATTGGATTTCGCAGA
-TATTGTCGGTAACTT
--- a/test-data/GEPY_test_long_1.fa.fai	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-scaffold146.1|size86774	30095	25	80	81
--- a/test-data/GEPY_test_long_1_output_unfiltered.gff3	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-##gff-version 3
-##-----------------------------------------------
-##PIPELINE VERSION         : iter_search_optional-rv-3168(0b80fa0)
-##PROTEIN DATABASE VERSION : Viridiplantae_v3.0_pdb
-##-----------------------------------------------
-scaffold146.1|size86774	dante	protein_domain	976	1289	293	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:976-1289[100percent];Best_Hit_DB_Pos=26:134of134;DB_Seq=ISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCG-LSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFF-FTHDLQKDGDISIQQIRSCDNLAD;Region_Seq=ISWRSTKQTIVAISSNHVELLAIHDTSRECVWLRFMIESI\IMXXXXXXXXXXXXXXXXXXQLKE*YIKCDRTKHISPKFF\FTQDLQKNGDVIIQQIRSNDNVVD;Query_Seq=ISWRSTKQTIVAISSNHVELLAIHDTSRECVWLRFMIESI-----\IMXXXXXXXXXXXXXXXXXXQLKE*YIKCDRTKHISPKFF\FTQDLQKNGDVIIQQIRSNDNVVD;Identity=0.59;Similarity=0.66;Relat_Length=0.813;Relat_Interruptions=1.5;Hit_to_DB_Length=0.83
-scaffold146.1|size86774	dante	protein_domain	6810	7049	153	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-PROT__REXdb_ID9702|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:6810-7049[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=LVDDGSKVNLLPYRVFQQMGIPEEQLVRDQAPVKGIGGVPVLVEGKVKLALTLGEAPRTRTHYAVFLVVKPPLSYNAILG;Region_Seq=LVDSGASCNLMSKRVMKQMGIPDEKLEFLDATLYAFDRRTIIPAGKIQLPVTLGEEERTRSEMVEFIIVDMDLAYNAILG;Query_Seq=LVDSGASCNLMSKRVMKQMGIPDEKLEFLDATLYAFDRRTIIPAGKIQLPVTLGEEERTRSEMVEFIIVDMDLAYNAILG;Identity=0.44;Similarity=0.62;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	7656	8296	.	+	.	Name=RT/INT;Final_Classification=Ambiguous_domain;Region_Hits_Classifications_=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[246bp],INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[468bp]
-scaffold146.1|size86774	dante	protein_domain	8756	9241	538	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[486bp],RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[441bp];Best_Hit=Ty3-RT__REXdb_ID8210|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:8801-9241[90percent];Best_Hit_DB_Pos=27:173of173;DB_Seq=DFTDLNKACPKDSFPLPHIDRLVDSTAGNELLTFMDAFSGYNQIMMNPEDQEKTSFITDRGIYCYKVMPFGLKNAGATYQRLVNKMFHNHLGKTMEVYIDDMLVKSLKKEDHVKHLEECFDILNKYQMKLNPAKCTFGVPSGEFLGY;Region_Seq=TSIATASGGRTSDGADFKGVNKHCQPDPFPLPHIDRLVDAVAGSSLLSTMDAYSGYHQISLAREDQAKSSFLTEDGVFCYVVMPFGLRNAGATYQRLVNKIFADLLGKEMEIYVDDMIVKSLNDEDHIIYLSHCFEVCRTHRLKLNPAKCCFGVRSGKFLGY;Query_Seq=DFKGVNKHCQPDPFPLPHIDRLVDAVAGSSLLSTMDAYSGYHQISLAREDQAKSSFLTEDGVFCYVVMPFGLRNAGATYQRLVNKIFADLLGKEMEIYVDDMIVKSLNDEDHIIYLSHCFEVCRTHRLKLNPAKCCFGVRSGKFLGY;Identity=0.63;Similarity=0.8;Relat_Length=0.85;Relat_Interruptions=0.0;Hit_to_DB_Length=0.85
-scaffold146.1|size86774	dante	protein_domain	9434	9781	343	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-RH__REXdb_ID9729|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:9434-9772[97percent];Best_Hit_DB_Pos=1:113of149;DB_Seq=WTEECEEAFQKLKEYLGSPHLLVKPIQGEPLFLYLAVSEHATSSVLVREDDGVQRPIYYTSRALVDAETRYLSLEKIVLALIVSARRLRPYFQAHTIIVLTDQPIRQVLAKPD;Region_Seq=WTDQCDRAFKELKTYLASPPLIVSPTPTETLGLYLAVSEHAVSSVLVAERDGVQHPVYYVSHTLLPAESRYSTVEKFVLALLKSVAKLRHYFESRKVIVYTDQPIKAVLGQSDHTS;Query_Seq=WTDQCDRAFKELKTYLASPPLIVSPTPTETLGLYLAVSEHAVSSVLVAERDGVQHPVYYVSHTLLPAESRYSTVEKFVLALLKSVAKLRHYFESRKVIVYTDQPIKAVLGQSD;Identity=0.58;Similarity=0.73;Relat_Length=0.758;Relat_Interruptions=0.0;Hit_to_DB_Length=0.76
-scaffold146.1|size86774	dante	protein_domain	10810	11667	747	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-INT__REXdb_ID9633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10819-11667[98percent];Best_Hit_DB_Pos=30:310of310;DB_Seq=RDTHQYVQRCIQCQKFAPLIHKPGEEMTIMSAPCPFAQWGIDLVGPFPQTAGRKKFFIVAVDYFTKWVEAEALSKITEDEVMHFIWKYICCRFGLPRSLVSDNGTQFNGKKIRAWCEEMKITQKFVAVAHPQANGQVESTNRTIVNGLKKRIDELGGSWVDELPSVLWSYRTSAKAATGETPFRLTYGTEAVIPVEVAMDTLRIATF--DEEANDGALRTRLDEIFDLREAAYLHMERSKNLIKARYDQGVRSRSFQIGDLILRRADALKHTGKLEANWEGPY;Region_Seq=SVLRDAMDCVRRCQSCQYFAPINRKPGAEITLTELPCPFDRWGIDILGPFPQSVRQRRFCIVAVEYHSKWIEAEAVASITSEAVKKFVMNNIIVRFGCPRVLVSDNGPQFISDKFATFCEEYGIQQRTSSVYHPQTNGQAEASNKIILHGLRRNLDSLGGSWPDQLPHVLWAYRTTPKSSTGETPFSLVYGSEAVAPVESTIITPRIAAYMHTESANTEFRELDLDLLEERRNEVYGRVRKQQRALRKRYNQRVRPRQFEKGDLILRSVESQGHKGKLDRAWEGPY;Query_Seq=RDAMDCVRRCQSCQYFAPINRKPGAEITLTELPCPFDRWGIDILGPFPQSVRQRRFCIVAVEYHSKWIEAEAVASITSEAVKKFVMNNIIVRFGCPRVLVSDNGPQFISDKFATFCEEYGIQQRTSSVYHPQTNGQAEASNKIILHGLRRNLDSLGGSWPDQLPHVLWAYRTTPKSSTGETPFSLVYGSEAVAPVESTIITPRIAAYMHTESANTEFRELDLDLLEERRNEVYGRVRKQQRALRKRYNQRVRPRQFEKGDLILRSVESQGHKGKLDRAWEGPY;Identity=0.49;Similarity=0.66;Relat_Length=0.906;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	14592	14828	289	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:14592-14828[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Region_Seq=MVDLGASINLMPYSIYSALQLGPLQGTAIVIKLADRSNTHPEGVIEDVLVQVNNLVFPADFYVLKMGKAENNDCPLLLG;Query_Seq=MVDLGASINLMPYSIYSALQLGPLQGTAIVIKLADRSNTHPEGVIEDVLVQVNNLVFPADFYVLKM-GKAENNDCPLLLG;Identity=0.68;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	15420	15995	871	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RT__REXdb_ID6635|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:15420-15995[100percent];Best_Hit_DB_Pos=1:192of192;DB_Seq=IYPITDSKWVAPIHVVPKKTGITLVKNKNDELIPTRISSGWRMCVDYRKLNLATRKDHFPLPFMDQMLERLAGKSFYCFLDGYSGYNQIVINPEDQEKTTFTCPFGTYAYRRMPFGLCNAPATFQRCMMSIFSDYVERIIEVFMDDFTVYGDSFDKCLENLSLILKRCIETNLVLNYEKCYFMVEQGIVLGH;Region_Seq=IYAISDSDWVSPVHVVPKKTGFTVERNKNGELVPKRVTNGWRVCIDYRKLNDATRKDHFPLPFIDQMLERLAGKKFYCFLDGYSGYNQVAIAPEDQEKTTFTCTYGTYAFRKMPFGLCNAPATFQRCMLSIFSEFTGKFIEVFMDDFTVYGDSFEGALENLEKVLQRCVEKKLVLNSEKCHFMVRQGIVLGH;Query_Seq=IYAISDSDWVSPVHVVPKKTGFTVERNKNGELVPKRVTNGWRVCIDYRKLNDATRKDHFPLPFIDQMLERLAGKKFYCFLDGYSGYNQVAIAPEDQEKTTFTCTYGTYAFRKMPFGLCNAPATFQRCMLSIFSEFTGKFIEVFMDDFTVYGDSFEGALENLEKVLQRCVEKKLVLNSEKCHFMVRQGIVLGH;Identity=0.76;Similarity=0.88;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	16188	16634	623	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RH__REXdb_ID6648|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16188-16634[100percent];Best_Hit_DB_Pos=1:149of149;DB_Seq=FNEACKVAFDKLKELLTSAPIIQPPDWSLPFEIMCDASNYVVGAVLGQRVGRAAHVIYYTSRTLDSAQCNYSTTEKELLAIVFALEKFRSYLLGTKVIIFSDHAALRYLLAKKEAKPRLIRWILLLQEFNLEIRDKKGTENLVADHLSR;Region_Seq=FNQECQEAFNKLKSLLTAAPIIQPPNWELPFELMCDASNYALGAVLGQKIEGKRHVIYYASKTLSEAQIHYTTTEKELLAIVYALEKFRSYLLGTKITVHSDHAALRHLLSKKESKPRLIRWILLLQEFDLEIKDRAGTENAVADNLSR;Query_Seq=FNQECQEAFNKLKSLLTAAPIIQPPNWELPFELMCDASNYALGAVLGQKIEGKRHVIYYASKTLSEAQIHYTTTEKELLAIVYALEKFRSYLLGTKITVHSDHAALRHLLSKKESKPRLIRWILLLQEFDLEIKDRAGTENAVADNLSR;Identity=0.74;Similarity=0.87;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	24522	24659	149	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=PROT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-PROT__REXdb_ID2599|Class_I|LTR|Ty1/copia|Bianca:24531-24659[93percent];Best_Hit_DB_Pos=29:71of71;DB_Seq=STISGTTNLVEGSGRANIMLPNGTRFHINDALYSSKSRRNLLS;Region_Seq=IKASTIVCEANIVEGSGRATVVLPSGTHIRIDDALYANKSRRNLLS;Query_Seq=STIVCEANIVEGSGRATVVLPSGTHIRIDDALYANKSRRNLLS;Identity=0.65;Similarity=0.77;Relat_Length=0.606;Relat_Interruptions=0.0;Hit_to_DB_Length=0.61
-scaffold146.1|size86774	dante	protein_domain	24873	25481	913	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=INT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-INT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:24873-25481[100percent];Best_Hit_DB_Pos=1:203of203;DB_Seq=HERLGHPGSIMMRKIIEHSCGHQLKSREILQSNKFSCTSCSQGKLITRPSPTKIGSESLNFLERIHGDICGPIHPPCGPFRYFMVLIDASTRWSHVCLLSTRNQAFARLLAQLIRIRAHFPDYPVKKIRLDNAAEFSSQTFNDYCMSIGIDIEHPVAHVHTQNGLAESFIKRIQLIARPLLMRCKLPISTWGHAILHAATLIR;Region_Seq=HDRLGHPGMIMMRKIIRTTSGHSLKNREILHPREYICTACAQGKLITRPSPVKIMNERITFLERIQGDICGPIHPACGPFRYFIVLIDASSRWSHVSLLSTRNHAFARLLSQIIRLRAHFPDYPVKKIRLDNAAEFTSRTFNNYCLAMGIDVEHPVEYVHTQNGLAESLIKRLQLIARPLLMKSKLPVTCWGHAIIHASSLIR;Query_Seq=HDRLGHPGMIMMRKIIRTTSGHSLKNREILHPREYICTACAQGKLITRPSPVKIMNERITFLERIQGDICGPIHPACGPFRYFIVLIDASSRWSHVSLLSTRNHAFARLLSQIIRLRAHFPDYPVKKIRLDNAAEFTSRTFNNYCLAMGIDVEHPVEYVHTQNGLAESLIKRLQLIARPLLMKSKLPVTCWGHAIIHASSLIR;Identity=0.75;Similarity=0.9;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	26313	27071	1060	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:26322-27032[93percent];Best_Hit_DB_Pos=1:237of262;DB_Seq=WKDAIKAELYSLNKRKVFGPVVRTPKGVKPVGYKWVFVRKRNENGEIARYKARLVAQGFSQRPGIDFNETYSPVVDATTFRYLISLIAYEGLNLHMMDVVTAYLYGSLDSDIYMKIPEGFNLPDTNSSGSREDYSIKLNKSLYGLKQSGRMWYNRLSEYLLKEGYKNDSVCPCIFMKRSENEFAIIAVYVDDINIIGTPEELPKAIDCLKKEFEMKDLGKTKFCLGLQIEHLNNGIF;Region_Seq=WPKWKDAIESELKSLNKRDVFGPVVRTPEGVQPVGYKWVFVRKRNDKGEISRYKARLVAQGFSQRPGIDYDETYSPVMDATTFRFLISLAIEYGLDLQLMDVVTAYLYGSLDCEIYMKIPEGFHMPERYSSEPRTDYAIKLNKSLYGLKQSGRMWYNRLSEYLIKEGYKNNLVCPCVFMKKFENEFVIIAVYVDDINIVGTQKALLDAVNCLKREFEMKDLGRTKYCLGLQIEYLKNGIFRTDYAIKLNKSLY;Query_Seq=WKDAIESELKSLNKRDVFGPVVRTPEGVQPVGYKWVFVRKRNDKGEISRYKARLVAQGFSQRPGIDYDETYSPVMDATTFRFLISLAIEYGLDLQLMDVVTAYLYGSLDCEIYMKIPEGFHMPERYSSEPRTDYAIKLNKSLYGLKQSGRMWYNRLSEYLIKEGYKNNLVCPCVFMKKFENEFVIIAVYVDDINIVGTQKALLDAVNCLKREFEMKDLGRTKYCLGLQIEYLKNGIF;Identity=0.78;Similarity=0.91;Relat_Length=0.905;Relat_Interruptions=0.0;Hit_to_DB_Length=0.9
-scaffold146.1|size86774	dante	protein_domain	27723	28124	581	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:27723-28124[100percent];Best_Hit_DB_Pos=1:134of134;DB_Seq=DAGYLSDPHHGRSQTGYLFTSGNTAISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCGLSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFFFTHDLQKDGDISIQQIRSCDNLAD;Region_Seq=DAGYRSDPHNGRSQTGYVFLNKGAAISWRSTKQTIAATSSNHAELLAIHETSRECVWLRSMIESIYNACGLFTDKMPPTVLYEDNSACIIQLKEGYIKGDRTKHISPKFFFTHDLQKNGEVIIQQIRSSDNVAD;Query_Seq=DAGYRSDPHNGRSQTGYVFLNKGAAISWRSTKQTIAATSSNHAELLAIHETSRECVWLRSMIESIYNACGLFTDKMPPTVLYEDNSACIIQLKEGYIKGDRTKHISPKFFFTHDLQKNGEVIIQQIRSSDNVAD;Identity=0.75;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	9783	9956	178	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-INT__REXdb_ID9635|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:9783-9956[100percent];Best_Hit_DB_Pos=1:58of310;DB_Seq=HRGGCGEHGGARALIQKLHRAGYYWPGMKRDTHQYVQRCIQCQKFAPLIHKPGEEMTI;Region_Seq=HSGLCGNHPGARSLALRIQRAGYYWPTLLRDAMDCVRRCQSCQYFAPINRKPGAEITL;Query_Seq=HSGLCGNHPGARSLALRIQRAGYYWPTLLRDAMDCVRRCQSCQYFAPINRKPGAEITL;Identity=0.53;Similarity=0.69;Relat_Length=0.187;Relat_Interruptions=0.0;Hit_to_DB_Length=0.19
-scaffold146.1|size86774	dante	protein_domain	10299	10658	303	-	.	Name=aRH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|TatII[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[360bp];Best_Hit=Ty3-aRH__REXdb_ID9546|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10299-10658[100percent];Best_Hit_DB_Pos=1:121of121;DB_Seq=WILHVDGASSKQGSGIGIRLQSPYGEVIEQSFCLAFNASNNEAEYESLLAGLRLAVGIGVTKLRAFCNSQLVANQFSGDYEAKDSRMEAYLAQVQELSKKFLSFELARIPRSENSAADSLA;Region_Seq=WNMYIDGSTQSGAGVGVHYITPYGDWINLAVKLQFPATNNVAEYEALLAGMNFALSLGVTRLKTFSDSQLVVEQFSGHFQAKEPMLEAYKSRSQLLAAKFSEFSLEHIPRESNRAADSLA;Query_Seq=WNMYIDG-STQSGAGVGVHYITPYGDWINLAVKLQFPATNNVAEYEALLAGMNFALSLGVTRLKTFSDSQLVVEQFSGHFQAKEPMLEAYKSRSQLLAAKFSEFSLEHIPRESNRAADSLA;Identity=0.49;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	10701	10817	136	-	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[117bp],RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[99bp];Best_Hit=Ty3-RH__REXdb_ID8372|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10701-10817[100percent];Best_Hit_DB_Pos=279:317of317;DB_Seq=NREGTGRVVKWAIELSEFDLHFEPRHAIKSQALADFVVE;Region_Seq=NTDHTSRLAKWAIKVSAMDIAFEPRKAIKGQALADFVVE;Query_Seq=NTDHTSRLAKWAIKVSAMDIAFEPRKAIKGQALADFVVE;Identity=0.64;Similarity=0.77;Relat_Length=0.123;Relat_Interruptions=0.0;Hit_to_DB_Length=0.12
-scaffold146.1|size86774	dante	protein_domain	16797	17666	1057	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16812-17666[98percent];Best_Hit_DB_Pos=1:285of313;DB_Seq=HSHSYGGHFGAKRTAHKVLESGFYWPSIFKDAYHFCKSCEKCQRTGNITHKNQMPLTNILVSEIFDVWGIDFMGPFPSSFGNLYILLVVDYVSKWIEAKATRTNDAKVVLDFVRTHIFNRFGIPKAIISDRGTHFCNRSMEALLRKYHVTHRTSTAYHPQTNGQAEISNREIKSILEKIVQPNRRDWSLRLGDALWAYRTAYKSPIGMSPYRMIYGKACHLPVELEHKAFWAIKQCNMDYDAAGIARKLQLQELEEIRNDAYENARIYKEKTKNLHDRMLTRKEF;Region_Seq=HASDYGGHFGPNRTARRILDVGFYWPSIFRDVYQFCRTCDACQRVGNITNRREMPQNYILANEIFDIWGLDFMGPFPQSQGNNYILVAVDYVSKWVEAIPTRTDDGKTVTEFLRKNIFTRYGVPKAIISDRGTHFCNSTMRAMMKKYNVIHKTTTAYHPQGNGQAEATNREIKSILEKVVNKKRSNWSQKLPDALWAYRTAYKTPIGTTPFRLIYGKHCNLPVGLEHKAYWAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKTYHDKKLLQQNFRERLS;Query_Seq=HASDYGGHFGPNRTARRILDVGFYWPSIFRDVYQFCRTCDACQRVGNITNRREMPQNYILANEIFDIWGLDFMGPFPQSQGNNYILVAVDYVSKWVEAIPTRTDDGKTVTEFLRKNIFTRYGVPKAIISDRGTHFCNSTMRAMMKKYNVIHKTTTAYHPQGNGQAEATNREIKSILEKVVNKKRSNWSQKLPDALWAYRTAYKTPIGTTPFRLIYGKHCNLPVGLEHKAYWAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKTYHDKKLLQQNF;Identity=0.61;Similarity=0.79;Relat_Length=0.911;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	18554	18811	306	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6693|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:18554-18802[96percent];Best_Hit_DB_Pos=231:313of313;DB_Seq=WALRLLNFDNNACGEKRKLQLQELEEMRLNAYESSRIYKERTKAYHDKKLQRREFQPGQQVLLFNSRLRLFPGKLKSKWSGPF;Region_Seq=QGNWAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKAYHDKKILQQNFREGQQVLLFNSKLRLFPGKLKSRWMGPF;Query_Seq=WAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKAYHDKKILQQNFREGQQVLLFNSKLRLFPGKLKSRWMGPF;Identity=0.65;Similarity=0.82;Relat_Length=0.265;Relat_Interruptions=0.0;Hit_to_DB_Length=0.27
-scaffold146.1|size86774	dante	protein_domain	19158	19478	197	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:19182-19448[83percent];Best_Hit_DB_Pos=216:304of314;DB_Seq=YGKPCHLPVELEHKAWWAVKQCNMELDVAGQHRxLQLQELEEIRNDAYESSxIYKEKTKAFHDKQILRKNFEVGQKVLIFHSRLKLFPG;Region_Seq=PRGTISIGLNFGKQCKVLVGMEHENYWEIREMNYEEGADVEQKQMQLQKMDALKLEAYDNSRIDKEKLKAHHAKRILQQNCKKRQQVLIFDSKLKMFPGIPRWMEPF;Query_Seq=FGKQCKVLVGMEHENYWEIREMNYEEGADVEQKQMQLQKMDALKLEAYDNSRIDKEKLKAHHAKRILQQNCKKRQQVLIFDSKLKMFPG;Identity=0.42;Similarity=0.71;Relat_Length=0.283;Relat_Interruptions=0.0;Hit_to_DB_Length=0.28
-scaffold146.1|size86774	dante	protein_domain	19976	20212	259	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:19976-20212[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Region_Seq=MVDLGASINLMPYYIYSALKLGSLQGTAIIIKLADRSETHPEGVVKDVLAQVNNLVFPADFYVLKMGEAENDDCPLLLG;Query_Seq=MVDLGASINLMPYYIYSALKLGSLQGTAIIIKLADRSETHPEGVVKDVLAQVNNLVFPADFYVLKM-GEAENDDCPLLLG;Identity=0.62;Similarity=0.79;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	28912	29124	216	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=PROT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-PROT__REXdb_ID2599|Class_I|LTR|Ty1/copia|Bianca:28912-29124[100percent];Best_Hit_DB_Pos=1:71of71;DB_Seq=CLADCATTHTILRDKRYFLELTLIKANVSTISGTTNLVEGSGRANIMLPNGTRFHINDALYSSKSRRNLLS;Region_Seq=CLVDSATTHTILKNMRYFTSFEKRDVNIATIVCEANIVEGSGRAVIVLPSGTHIRIDDALYANKSRRNLLS;Query_Seq=CLVDSATTHTILKNMRYFTSFEKRDVNIATIVCEANIVEGSGRAVIVLPSGTHIRIDDALYANKSRRNLLS;Identity=0.59;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
--- a/test-data/single_fasta.gff3	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-##gff-version 3
-##-----------------------------------------------
-##PIPELINE VERSION         : dante-rv-3081(adb2509)
-##PROTEIN DATABASE VERSION : Viridiplantae_v3.0_pdb
-##-----------------------------------------------
-scaffold146.1|size86774	dante	protein_domain	976	1289	293	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:976-1289[100percent];Best_Hit_DB_Pos=26:134of134;DB_Seq=ISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCG-LSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFF-FTHDLQKDGDISIQQIRSCDNLAD;Query_Seq=ISWRSTKQTIVAISSNHVELLAIHDTSRECVWLRFMIESI-----\IMXXXXXXXXXXXXXXXXXXQLKE*YIKCDRTKHISPKFF\FTQDLQKNGDVIIQQIRSNDNVVD;Identity=0.59;Similarity=0.66;Relat_Length=0.813;Relat_Interruptions=1.5;Hit_to_DB_Length=0.83
-scaffold146.1|size86774	dante	protein_domain	6810	7049	153	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-PROT__REXdb_ID9702|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:6810-7049[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=LVDDGSKVNLLPYRVFQQMGIPEEQLVRDQAPVKGIGGVPVLVEGKVKLALTLGEAPRTRTHYAVFLVVKPPLSYNAILG;Query_Seq=LVDSGASCNLMSKRVMKQMGIPDEKLEFLDATLYAFDRRTIIPAGKIQLPVTLGEEERTRSEMVEFIIVDMDLAYNAILG;Identity=0.44;Similarity=0.62;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	7656	8296	.	+	.	Name=RT/INT;Final_Classification=Ambiguous_domain;Region_Hits_Classifications_=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[246bp],INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[468bp]
-scaffold146.1|size86774	dante	protein_domain	8756	9241	538	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[486bp],RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[441bp];Best_Hit=Ty3-RT__REXdb_ID8210|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:8801-9241[90percent];Best_Hit_DB_Pos=27:173of173;DB_Seq=DFTDLNKACPKDSFPLPHIDRLVDSTAGNELLTFMDAFSGYNQIMMNPEDQEKTSFITDRGIYCYKVMPFGLKNAGATYQRLVNKMFHNHLGKTMEVYIDDMLVKSLKKEDHVKHLEECFDILNKYQMKLNPAKCTFGVPSGEFLGY;Query_Seq=DFKGVNKHCQPDPFPLPHIDRLVDAVAGSSLLSTMDAYSGYHQISLAREDQAKSSFLTEDGVFCYVVMPFGLRNAGATYQRLVNKIFADLLGKEMEIYVDDMIVKSLNDEDHIIYLSHCFEVCRTHRLKLNPAKCCFGVRSGKFLGY;Identity=0.63;Similarity=0.8;Relat_Length=0.85;Relat_Interruptions=0.0;Hit_to_DB_Length=0.85
-scaffold146.1|size86774	dante	protein_domain	9433	9781	343	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-RH__REXdb_ID9729|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:9434-9772[97percent];Best_Hit_DB_Pos=1:113of149;DB_Seq=WTEECEEAFQKLKEYLGSPHLLVKPIQGEPLFLYLAVSEHATSSVLVREDDGVQRPIYYTSRALVDAETRYLSLEKIVLALIVSARRLRPYFQAHTIIVLTDQPIRQVLAKPD;Query_Seq=WTDQCDRAFKELKTYLASPPLIVSPTPTETLGLYLAVSEHAVSSVLVAERDGVQHPVYYVSHTLLPAESRYSTVEKFVLALLKSVAKLRHYFESRKVIVYTDQPIKAVLGQSD;Identity=0.58;Similarity=0.73;Relat_Length=0.758;Relat_Interruptions=0.0;Hit_to_DB_Length=0.76
-scaffold146.1|size86774	dante	protein_domain	10810	11667	747	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-INT__REXdb_ID9633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10819-11667[98percent];Best_Hit_DB_Pos=30:310of310;DB_Seq=RDTHQYVQRCIQCQKFAPLIHKPGEEMTIMSAPCPFAQWGIDLVGPFPQTAGRKKFFIVAVDYFTKWVEAEALSKITEDEVMHFIWKYICCRFGLPRSLVSDNGTQFNGKKIRAWCEEMKITQKFVAVAHPQANGQVESTNRTIVNGLKKRIDELGGSWVDELPSVLWSYRTSAKAATGETPFRLTYGTEAVIPVEVAMDTLRIATF--DEEANDGALRTRLDEIFDLREAAYLHMERSKNLIKARYDQGVRSRSFQIGDLILRRADALKHTGKLEANWEGPY;Query_Seq=RDAMDCVRRCQSCQYFAPINRKPGAEITLTELPCPFDRWGIDILGPFPQSVRQRRFCIVAVEYHSKWIEAEAVASITSEAVKKFVMNNIIVRFGCPRVLVSDNGPQFISDKFATFCEEYGIQQRTSSVYHPQTNGQAEASNKIILHGLRRNLDSLGGSWPDQLPHVLWAYRTTPKSSTGETPFSLVYGSEAVAPVESTIITPRIAAYMHTESANTEFRELDLDLLEERRNEVYGRVRKQQRALRKRYNQRVRPRQFEKGDLILRSVESQGHKGKLDRAWEGPY;Identity=0.49;Similarity=0.66;Relat_Length=0.906;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	14592	14828	289	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:14592-14828[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Query_Seq=MVDLGASINLMPYSIYSALQLGPLQGTAIVIKLADRSNTHPEGVIEDVLVQVNNLVFPADFYVLKM-GKAENNDCPLLLG;Identity=0.68;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	15420	15995	871	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RT__REXdb_ID6635|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:15420-15995[100percent];Best_Hit_DB_Pos=1:192of192;DB_Seq=IYPITDSKWVAPIHVVPKKTGITLVKNKNDELIPTRISSGWRMCVDYRKLNLATRKDHFPLPFMDQMLERLAGKSFYCFLDGYSGYNQIVINPEDQEKTTFTCPFGTYAYRRMPFGLCNAPATFQRCMMSIFSDYVERIIEVFMDDFTVYGDSFDKCLENLSLILKRCIETNLVLNYEKCYFMVEQGIVLGH;Query_Seq=IYAISDSDWVSPVHVVPKKTGFTVERNKNGELVPKRVTNGWRVCIDYRKLNDATRKDHFPLPFIDQMLERLAGKKFYCFLDGYSGYNQVAIAPEDQEKTTFTCTYGTYAFRKMPFGLCNAPATFQRCMLSIFSEFTGKFIEVFMDDFTVYGDSFEGALENLEKVLQRCVEKKLVLNSEKCHFMVRQGIVLGH;Identity=0.76;Similarity=0.88;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	16188	16634	623	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RH__REXdb_ID6648|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16188-16634[100percent];Best_Hit_DB_Pos=1:149of149;DB_Seq=FNEACKVAFDKLKELLTSAPIIQPPDWSLPFEIMCDASNYVVGAVLGQRVGRAAHVIYYTSRTLDSAQCNYSTTEKELLAIVFALEKFRSYLLGTKVIIFSDHAALRYLLAKKEAKPRLIRWILLLQEFNLEIRDKKGTENLVADHLSR;Query_Seq=FNQECQEAFNKLKSLLTAAPIIQPPNWELPFELMCDASNYALGAVLGQKIEGKRHVIYYASKTLSEAQIHYTTTEKELLAIVYALEKFRSYLLGTKITVHSDHAALRHLLSKKESKPRLIRWILLLQEFDLEIKDRAGTENAVADNLSR;Identity=0.74;Similarity=0.87;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	24522	24659	149	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=PROT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-PROT__REXdb_ID2599|Class_I|LTR|Ty1/copia|Bianca:24531-24659[93percent];Best_Hit_DB_Pos=29:71of71;DB_Seq=STISGTTNLVEGSGRANIMLPNGTRFHINDALYSSKSRRNLLS;Query_Seq=STIVCEANIVEGSGRATVVLPSGTHIRIDDALYANKSRRNLLS;Identity=0.65;Similarity=0.77;Relat_Length=0.606;Relat_Interruptions=0.0;Hit_to_DB_Length=0.61
-scaffold146.1|size86774	dante	protein_domain	24873	25481	913	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=INT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-INT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:24873-25481[100percent];Best_Hit_DB_Pos=1:203of203;DB_Seq=HERLGHPGSIMMRKIIEHSCGHQLKSREILQSNKFSCTSCSQGKLITRPSPTKIGSESLNFLERIHGDICGPIHPPCGPFRYFMVLIDASTRWSHVCLLSTRNQAFARLLAQLIRIRAHFPDYPVKKIRLDNAAEFSSQTFNDYCMSIGIDIEHPVAHVHTQNGLAESFIKRIQLIARPLLMRCKLPISTWGHAILHAATLIR;Query_Seq=HDRLGHPGMIMMRKIIRTTSGHSLKNREILHPREYICTACAQGKLITRPSPVKIMNERITFLERIQGDICGPIHPACGPFRYFIVLIDASSRWSHVSLLSTRNHAFARLLSQIIRLRAHFPDYPVKKIRLDNAAEFTSRTFNNYCLAMGIDVEHPVEYVHTQNGLAESLIKRLQLIARPLLMKSKLPVTCWGHAIIHASSLIR;Identity=0.75;Similarity=0.9;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	26313	27428	1060	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:26322-27032[63percent];Best_Hit_DB_Pos=1:237of262;DB_Seq=WKDAIKAELYSLNKRKVFGPVVRTPKGVKPVGYKWVFVRKRNENGEIARYKARLVAQGFSQRPGIDFNETYSPVVDATTFRYLISLIAYEGLNLHMMDVVTAYLYGSLDSDIYMKIPEGFNLPDTNSSGSREDYSIKLNKSLYGLKQSGRMWYNRLSEYLLKEGYKNDSVCPCIFMKRSENEFAIIAVYVDDINIIGTPEELPKAIDCLKKEFEMKDLGKTKFCLGLQIEHLNNGIF;Query_Seq=WKDAIESELKSLNKRDVFGPVVRTPEGVQPVGYKWVFVRKRNDKGEISRYKARLVAQGFSQRPGIDYDETYSPVMDATTFRFLISLAIEYGLDLQLMDVVTAYLYGSLDCEIYMKIPEGFHMPERYSSEPRTDYAIKLNKSLYGLKQSGRMWYNRLSEYLIKEGYKNNLVCPCVFMKKFENEFVIIAVYVDDINIVGTQKALLDAVNCLKREFEMKDLGRTKYCLGLQIEYLKNGIF;Identity=0.78;Similarity=0.91;Relat_Length=0.905;Relat_Interruptions=0.0;Hit_to_DB_Length=0.9
-scaffold146.1|size86774	dante	protein_domain	27723	28124	581	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:27723-28124[100percent];Best_Hit_DB_Pos=1:134of134;DB_Seq=DAGYLSDPHHGRSQTGYLFTSGNTAISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCGLSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFFFTHDLQKDGDISIQQIRSCDNLAD;Query_Seq=DAGYRSDPHNGRSQTGYVFLNKGAAISWRSTKQTIAATSSNHAELLAIHETSRECVWLRSMIESIYNACGLFTDKMPPTVLYEDNSACIIQLKEGYIKGDRTKHISPKFFFTHDLQKNGEVIIQQIRSSDNVAD;Identity=0.75;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	9780	9956	178	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-INT__REXdb_ID9635|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:9783-9956[98percent];Best_Hit_DB_Pos=1:58of310;DB_Seq=HRGGCGEHGGARALIQKLHRAGYYWPGMKRDTHQYVQRCIQCQKFAPLIHKPGEEMTI;Query_Seq=HSGLCGNHPGARSLALRIQRAGYYWPTLLRDAMDCVRRCQSCQYFAPINRKPGAEITL;Identity=0.53;Similarity=0.69;Relat_Length=0.187;Relat_Interruptions=0.0;Hit_to_DB_Length=0.19
-scaffold146.1|size86774	dante	protein_domain	10299	10658	303	-	.	Name=aRH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|TatII[360bp];Best_Hit=Ty3-aRH__REXdb_ID9546|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10299-10658[100percent];Best_Hit_DB_Pos=1:121of121;DB_Seq=WILHVDGASSKQGSGIGIRLQSPYGEVIEQSFCLAFNASNNEAEYESLLAGLRLAVGIGVTKLRAFCNSQLVANQFSGDYEAKDSRMEAYLAQVQELSKKFLSFELARIPRSENSAADSLA;Query_Seq=WNMYIDG-STQSGAGVGVHYITPYGDWINLAVKLQFPATNNVAEYEALLAGMNFALSLGVTRLKTFSDSQLVVEQFSGHFQAKEPMLEAYKSRSQLLAAKFSEFSLEHIPRESNRAADSLA;Identity=0.49;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	10701	10817	136	-	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[99bp],RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[117bp];Best_Hit=Ty3-RH__REXdb_ID8372|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10701-10817[100percent];Best_Hit_DB_Pos=279:317of317;DB_Seq=NREGTGRVVKWAIELSEFDLHFEPRHAIKSQALADFVVE;Query_Seq=NTDHTSRLAKWAIKVSAMDIAFEPRKAIKGQALADFVVE;Identity=0.64;Similarity=0.77;Relat_Length=0.123;Relat_Interruptions=0.0;Hit_to_DB_Length=0.12
-scaffold146.1|size86774	dante	protein_domain	16797	17666	1057	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16812-17666[98percent];Best_Hit_DB_Pos=1:285of313;DB_Seq=HSHSYGGHFGAKRTAHKVLESGFYWPSIFKDAYHFCKSCEKCQRTGNITHKNQMPLTNILVSEIFDVWGIDFMGPFPSSFGNLYILLVVDYVSKWIEAKATRTNDAKVVLDFVRTHIFNRFGIPKAIISDRGTHFCNRSMEALLRKYHVTHRTSTAYHPQTNGQAEISNREIKSILEKIVQPNRRDWSLRLGDALWAYRTAYKSPIGMSPYRMIYGKACHLPVELEHKAFWAIKQCNMDYDAAGIARKLQLQELEEIRNDAYENARIYKEKTKNLHDRMLTRKEF;Query_Seq=HASDYGGHFGPNRTARRILDVGFYWPSIFRDVYQFCRTCDACQRVGNITNRREMPQNYILANEIFDIWGLDFMGPFPQSQGNNYILVAVDYVSKWVEAIPTRTDDGKTVTEFLRKNIFTRYGVPKAIISDRGTHFCNSTMRAMMKKYNVIHKTTTAYHPQGNGQAEATNREIKSILEKVVNKKRSNWSQKLPDALWAYRTAYKTPIGTTPFRLIYGKHCNLPVGLEHKAYWAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKTYHDKKLLQQNF;Identity=0.61;Similarity=0.79;Relat_Length=0.911;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	18554	18811	306	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6693|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:18554-18802[96percent];Best_Hit_DB_Pos=231:313of313;DB_Seq=WALRLLNFDNNACGEKRKLQLQELEEMRLNAYESSRIYKERTKAYHDKKLQRREFQPGQQVLLFNSRLRLFPGKLKSKWSGPF;Query_Seq=WAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKAYHDKKILQQNFREGQQVLLFNSKLRLFPGKLKSRWMGPF;Identity=0.65;Similarity=0.82;Relat_Length=0.265;Relat_Interruptions=0.0;Hit_to_DB_Length=0.27
-scaffold146.1|size86774	dante	protein_domain	19158	19478	197	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:19182-19448[83percent];Best_Hit_DB_Pos=216:304of314;DB_Seq=YGKPCHLPVELEHKAWWAVKQCNMELDVAGQHRxLQLQELEEIRNDAYESSxIYKEKTKAFHDKQILRKNFEVGQKVLIFHSRLKLFPG;Query_Seq=FGKQCKVLVGMEHENYWEIREMNYEEGADVEQKQMQLQKMDALKLEAYDNSRIDKEKLKAHHAKRILQQNCKKRQQVLIFDSKLKMFPG;Identity=0.42;Similarity=0.71;Relat_Length=0.283;Relat_Interruptions=0.0;Hit_to_DB_Length=0.28
-scaffold146.1|size86774	dante	protein_domain	19976	20212	259	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:19976-20212[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Query_Seq=MVDLGASINLMPYYIYSALKLGSLQGTAIIIKLADRSETHPEGVVKDVLAQVNNLVFPADFYVLKM-GEAENDDCPLLLG;Identity=0.62;Similarity=0.79;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	28912	29124	216	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=PROT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-PROT__REXdb_ID2599|Class_I|LTR|Ty1/copia|Bianca:28912-29124[100percent];Best_Hit_DB_Pos=1:71of71;DB_Seq=CLADCATTHTILRDKRYFLELTLIKANVSTISGTTNLVEGSGRANIMLPNGTRFHINDALYSSKSRRNLLS;Query_Seq=CLVDSATTHTILKNMRYFTSFEKRDVNIATIVCEANIVEGSGRAVIVLPSGTHIRIDDALYANKSRRNLLS;Identity=0.59;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
--- a/test-data/single_fasta_filtered.gff3	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,33 +0,0 @@
-##gff-version 3
-##-----------------------------------------------
-##PIPELINE VERSION         : dante-rv-3081(adb2509)
-##PROTEIN DATABASE VERSION : Viridiplantae_v3.0_pdb
-##-----------------------------------------------
-##CLASSIFICATION	ORIGINAL_COUNTS	FILTERED_COUNTS
-##Ambiguous_domain	1	0
-##Class_I|LTR|Ty1/copia|Bianca	6	5
-##Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila	7	5
-##Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat	3	2
-##Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand	4	2
-##-----------------------------------------------
-##SEQ	DOMAIN	COUNTS
-##scaffold146.1|size86774	INT	3
-##scaffold146.1|size86774	PROT	4
-##scaffold146.1|size86774	RH	3
-##scaffold146.1|size86774	RT	3
-##scaffold146.1|size86774	aRH	1
-##-----------------------------------------------
-scaffold146.1|size86774	dante	protein_domain	976	1289	293	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:976-1289[100percent];Best_Hit_DB_Pos=26:134of134;DB_Seq=ISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCG-LSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFF-FTHDLQKDGDISIQQIRSCDNLAD;Query_Seq=ISWRSTKQTIVAISSNHVELLAIHDTSRECVWLRFMIESI-----\IMXXXXXXXXXXXXXXXXXXQLKE*YIKCDRTKHISPKFF\FTQDLQKNGDVIIQQIRSNDNVVD;Identity=0.59;Similarity=0.66;Relat_Length=0.813;Relat_Interruptions=1.5;Hit_to_DB_Length=0.83
-scaffold146.1|size86774	dante	protein_domain	6810	7049	153	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-PROT__REXdb_ID9702|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:6810-7049[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=LVDDGSKVNLLPYRVFQQMGIPEEQLVRDQAPVKGIGGVPVLVEGKVKLALTLGEAPRTRTHYAVFLVVKPPLSYNAILG;Query_Seq=LVDSGASCNLMSKRVMKQMGIPDEKLEFLDATLYAFDRRTIIPAGKIQLPVTLGEEERTRSEMVEFIIVDMDLAYNAILG;Identity=0.44;Similarity=0.62;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	8756	9241	538	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[486bp],RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[441bp];Best_Hit=Ty3-RT__REXdb_ID8210|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:8801-9241[90percent];Best_Hit_DB_Pos=27:173of173;DB_Seq=DFTDLNKACPKDSFPLPHIDRLVDSTAGNELLTFMDAFSGYNQIMMNPEDQEKTSFITDRGIYCYKVMPFGLKNAGATYQRLVNKMFHNHLGKTMEVYIDDMLVKSLKKEDHVKHLEECFDILNKYQMKLNPAKCTFGVPSGEFLGY;Query_Seq=DFKGVNKHCQPDPFPLPHIDRLVDAVAGSSLLSTMDAYSGYHQISLAREDQAKSSFLTEDGVFCYVVMPFGLRNAGATYQRLVNKIFADLLGKEMEIYVDDMIVKSLNDEDHIIYLSHCFEVCRTHRLKLNPAKCCFGVRSGKFLGY;Identity=0.63;Similarity=0.8;Relat_Length=0.85;Relat_Interruptions=0.0;Hit_to_DB_Length=0.85
-scaffold146.1|size86774	dante	protein_domain	10810	11667	747	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand;Best_Hit=Ty3-INT__REXdb_ID9633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10819-11667[98percent];Best_Hit_DB_Pos=30:310of310;DB_Seq=RDTHQYVQRCIQCQKFAPLIHKPGEEMTIMSAPCPFAQWGIDLVGPFPQTAGRKKFFIVAVDYFTKWVEAEALSKITEDEVMHFIWKYICCRFGLPRSLVSDNGTQFNGKKIRAWCEEMKITQKFVAVAHPQANGQVESTNRTIVNGLKKRIDELGGSWVDELPSVLWSYRTSAKAATGETPFRLTYGTEAVIPVEVAMDTLRIATF--DEEANDGALRTRLDEIFDLREAAYLHMERSKNLIKARYDQGVRSRSFQIGDLILRRADALKHTGKLEANWEGPY;Query_Seq=RDAMDCVRRCQSCQYFAPINRKPGAEITLTELPCPFDRWGIDILGPFPQSVRQRRFCIVAVEYHSKWIEAEAVASITSEAVKKFVMNNIIVRFGCPRVLVSDNGPQFISDKFATFCEEYGIQQRTSSVYHPQTNGQAEASNKIILHGLRRNLDSLGGSWPDQLPHVLWAYRTTPKSSTGETPFSLVYGSEAVAPVESTIITPRIAAYMHTESANTEFRELDLDLLEERRNEVYGRVRKQQRALRKRYNQRVRPRQFEKGDLILRSVESQGHKGKLDRAWEGPY;Identity=0.49;Similarity=0.66;Relat_Length=0.906;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	14592	14828	289	+	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:14592-14828[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Query_Seq=MVDLGASINLMPYSIYSALQLGPLQGTAIVIKLADRSNTHPEGVIEDVLVQVNNLVFPADFYVLKM-GKAENNDCPLLLG;Identity=0.68;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	15420	15995	871	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RT__REXdb_ID6635|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:15420-15995[100percent];Best_Hit_DB_Pos=1:192of192;DB_Seq=IYPITDSKWVAPIHVVPKKTGITLVKNKNDELIPTRISSGWRMCVDYRKLNLATRKDHFPLPFMDQMLERLAGKSFYCFLDGYSGYNQIVINPEDQEKTTFTCPFGTYAYRRMPFGLCNAPATFQRCMMSIFSDYVERIIEVFMDDFTVYGDSFDKCLENLSLILKRCIETNLVLNYEKCYFMVEQGIVLGH;Query_Seq=IYAISDSDWVSPVHVVPKKTGFTVERNKNGELVPKRVTNGWRVCIDYRKLNDATRKDHFPLPFIDQMLERLAGKKFYCFLDGYSGYNQVAIAPEDQEKTTFTCTYGTYAFRKMPFGLCNAPATFQRCMLSIFSEFTGKFIEVFMDDFTVYGDSFEGALENLEKVLQRCVEKKLVLNSEKCHFMVRQGIVLGH;Identity=0.76;Similarity=0.88;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	16188	16634	623	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=RH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-RH__REXdb_ID6648|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16188-16634[100percent];Best_Hit_DB_Pos=1:149of149;DB_Seq=FNEACKVAFDKLKELLTSAPIIQPPDWSLPFEIMCDASNYVVGAVLGQRVGRAAHVIYYTSRTLDSAQCNYSTTEKELLAIVFALEKFRSYLLGTKVIIFSDHAALRYLLAKKEAKPRLIRWILLLQEFNLEIRDKKGTENLVADHLSR;Query_Seq=FNQECQEAFNKLKSLLTAAPIIQPPNWELPFELMCDASNYALGAVLGQKIEGKRHVIYYASKTLSEAQIHYTTTEKELLAIVYALEKFRSYLLGTKITVHSDHAALRHLLSKKESKPRLIRWILLLQEFDLEIKDRAGTENAVADNLSR;Identity=0.74;Similarity=0.87;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	24873	25481	913	+	.	Name=INT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=INT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-INT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:24873-25481[100percent];Best_Hit_DB_Pos=1:203of203;DB_Seq=HERLGHPGSIMMRKIIEHSCGHQLKSREILQSNKFSCTSCSQGKLITRPSPTKIGSESLNFLERIHGDICGPIHPPCGPFRYFMVLIDASTRWSHVCLLSTRNQAFARLLAQLIRIRAHFPDYPVKKIRLDNAAEFSSQTFNDYCMSIGIDIEHPVAHVHTQNGLAESFIKRIQLIARPLLMRCKLPISTWGHAILHAATLIR;Query_Seq=HDRLGHPGMIMMRKIIRTTSGHSLKNREILHPREYICTACAQGKLITRPSPVKIMNERITFLERIQGDICGPIHPACGPFRYFIVLIDASSRWSHVSLLSTRNHAFARLLSQIIRLRAHFPDYPVKKIRLDNAAEFTSRTFNNYCLAMGIDVEHPVEYVHTQNGLAESLIKRLQLIARPLLMKSKLPVTCWGHAIIHASSLIR;Identity=0.75;Similarity=0.9;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	26313	27428	1060	+	.	Name=RT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RT__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:26322-27032[63percent];Best_Hit_DB_Pos=1:237of262;DB_Seq=WKDAIKAELYSLNKRKVFGPVVRTPKGVKPVGYKWVFVRKRNENGEIARYKARLVAQGFSQRPGIDFNETYSPVVDATTFRYLISLIAYEGLNLHMMDVVTAYLYGSLDSDIYMKIPEGFNLPDTNSSGSREDYSIKLNKSLYGLKQSGRMWYNRLSEYLLKEGYKNDSVCPCIFMKRSENEFAIIAVYVDDINIIGTPEELPKAIDCLKKEFEMKDLGKTKFCLGLQIEHLNNGIF;Query_Seq=WKDAIESELKSLNKRDVFGPVVRTPEGVQPVGYKWVFVRKRNDKGEISRYKARLVAQGFSQRPGIDYDETYSPVMDATTFRFLISLAIEYGLDLQLMDVVTAYLYGSLDCEIYMKIPEGFHMPERYSSEPRTDYAIKLNKSLYGLKQSGRMWYNRLSEYLIKEGYKNNLVCPCVFMKKFENEFVIIAVYVDDINIVGTQKALLDAVNCLKREFEMKDLGRTKYCLGLQIEYLKNGIF;Identity=0.78;Similarity=0.91;Relat_Length=0.905;Relat_Interruptions=0.0;Hit_to_DB_Length=0.9
-scaffold146.1|size86774	dante	protein_domain	27723	28124	581	+	.	Name=RH;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=RH|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-RH__REXdb_ID2558|Class_I|LTR|Ty1/copia|Bianca:27723-28124[100percent];Best_Hit_DB_Pos=1:134of134;DB_Seq=DAGYLSDPHHGRSQTGYLFTSGNTAISWRSVKQTITATSSNHAELLALHEASRECVWLRSMIQHIQKNCGLSSGRMDATIIYEDNTACIAQLKEGYIKGDRTKHISPKFFFTHDLQKDGDISIQQIRSCDNLAD;Query_Seq=DAGYRSDPHNGRSQTGYVFLNKGAAISWRSTKQTIAATSSNHAELLAIHETSRECVWLRSMIESIYNACGLFTDKMPPTVLYEDNSACIIQLKEGYIKGDRTKHISPKFFFTHDLQKNGEVIIQQIRSSDNVAD;Identity=0.75;Similarity=0.84;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	10299	10658	303	-	.	Name=aRH;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat;Region_Hits_Classifications=aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Ogre[360bp],aRH|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|TatII[360bp];Best_Hit=Ty3-aRH__REXdb_ID9546|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Tat|Retand:10299-10658[100percent];Best_Hit_DB_Pos=1:121of121;DB_Seq=WILHVDGASSKQGSGIGIRLQSPYGEVIEQSFCLAFNASNNEAEYESLLAGLRLAVGIGVTKLRAFCNSQLVANQFSGDYEAKDSRMEAYLAQVQELSKKFLSFELARIPRSENSAADSLA;Query_Seq=WNMYIDG-STQSGAGVGVHYITPYGDWINLAVKLQFPATNNVAEYEALLAGMNFALSLGVTRLKTFSDSQLVVEQFSGHFQAKEPMLEAYKSRSQLLAAKFSEFSLEHIPRESNRAADSLA;Identity=0.49;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	16797	17666	1057	-	.	Name=INT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=INT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-INT__REXdb_ID6633|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:16812-17666[98percent];Best_Hit_DB_Pos=1:285of313;DB_Seq=HSHSYGGHFGAKRTAHKVLESGFYWPSIFKDAYHFCKSCEKCQRTGNITHKNQMPLTNILVSEIFDVWGIDFMGPFPSSFGNLYILLVVDYVSKWIEAKATRTNDAKVVLDFVRTHIFNRFGIPKAIISDRGTHFCNRSMEALLRKYHVTHRTSTAYHPQTNGQAEISNREIKSILEKIVQPNRRDWSLRLGDALWAYRTAYKSPIGMSPYRMIYGKACHLPVELEHKAFWAIKQCNMDYDAAGIARKLQLQELEEIRNDAYENARIYKEKTKNLHDRMLTRKEF;Query_Seq=HASDYGGHFGPNRTARRILDVGFYWPSIFRDVYQFCRTCDACQRVGNITNRREMPQNYILANEIFDIWGLDFMGPFPQSQGNNYILVAVDYVSKWVEAIPTRTDDGKTVTEFLRKNIFTRYGVPKAIISDRGTHFCNSTMRAMMKKYNVIHKTTTAYHPQGNGQAEATNREIKSILEKVVNKKRSNWSQKLPDALWAYRTAYKTPIGTTPFRLIYGKHCNLPVGLEHKAYWAIREMNFEEGGDAELRQMQLQELDALRLEAYDNSRIYKERLKTYHDKKLLQQNF;Identity=0.61;Similarity=0.79;Relat_Length=0.911;Relat_Interruptions=0.0;Hit_to_DB_Length=0.91
-scaffold146.1|size86774	dante	protein_domain	19976	20212	259	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Region_Hits_Classifications=PROT|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila;Best_Hit=Ty3-PROT__REXdb_ID6659|Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Athila:19976-20212[100percent];Best_Hit_DB_Pos=1:80of80;DB_Seq=MLDLGASINVMPYSIYNSLNLGPMEETCIIIQLADRSNAYPKGVMEDVLVQVNELVFPADFYILKMEDELSPNPTPILLG;Query_Seq=MVDLGASINLMPYYIYSALKLGSLQGTAIIIKLADRSETHPEGVVKDVLAQVNNLVFPADFYVLKM-GEAENDDCPLLLG;Identity=0.62;Similarity=0.79;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
-scaffold146.1|size86774	dante	protein_domain	28912	29124	216	-	.	Name=PROT;Final_Classification=Class_I|LTR|Ty1/copia|Bianca;Region_Hits_Classifications=PROT|Class_I|LTR|Ty1/copia|Bianca;Best_Hit=Ty1-PROT__REXdb_ID2599|Class_I|LTR|Ty1/copia|Bianca:28912-29124[100percent];Best_Hit_DB_Pos=1:71of71;DB_Seq=CLADCATTHTILRDKRYFLELTLIKANVSTISGTTNLVEGSGRANIMLPNGTRFHINDALYSSKSRRNLLS;Query_Seq=CLVDSATTHTILKNMRYFTSFEKRDVNIATIVCEANIVEGSGRAVIVLPSGTHIRIDDALYANKSRRNLLS;Identity=0.59;Similarity=0.7;Relat_Length=1.0;Relat_Interruptions=0.0;Hit_to_DB_Length=1.0
--- a/test-data/test_seq_1	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,34 +0,0 @@
->test_seq_1
-tatactacgcgactagactacgatactagggacagcatattacacccagagaacagacta
-TTGCAAAAAGAGAAGATTGGTAAAACGGGGGGGAATGTGTGAGTTGTAATGGGTTCATCT
-GCTCATGTTACTGCAGGGAGGACAGGTCCCGAACCCATTTCCAGCCTTTGGCCTGTCCCT
-CGTCCCTTACCGATCAAAGATACAACCCGGCGGAAGACCTATGGACTCTTACGGTATGCA
-AGCTAGTTCCTTTAGATTAGATTACAATGTTTACTTTTGTTATTTCTAGTTGGCAAGAGT
-GTTCCCCATAGTGTAGTTCCTTGAGCGGTAACAGTGAGCGAACCGTGAGAGCATGCATAC
-TGTTTCGGACGAGCTGTTTTACAGGTTTCCAAAGACTGTTTCTTTGCGATCCGACCAGAA
-GCTACTGCATGTTCGAGGACGAACATGGGGCAAGTGTGGGGATGTTTGGAGGTATGTTAT
-TTTTGTATGTTTTTAGCTATGCATTTTAGGCCTCTTGATAGTGGTTAGAGTTGATTTTGA
-tatactacgcgactagactacgatactagggacagcatattacacccagagaacagacta
-CCGCTTCCGCACCAGGCGAGCTTAGCTCGTGTGTTCCTTCCTGGCGGACGCCTCAGAGGG
-AGATCATGTTGGTGATCAATGTTGGGGTGGGATAGGAGTTTACTCGTGGGCTATGTTGGA
-CCTCTCTTTGGGACATGGTCCAGAGCTAATTGGTCGTCTCTAGGAGGGCCAGATGACAGT
-tatactacgcgactagactacgatactagggacagcatattacacccagagaacagacta
-ACCTGAAGGTGTACAACCGGTTGGTTATAAGTGGGTTTTTGTGAGAAAACGAAATGATAA
-AGGAGAAATATCTCGGTATAAGGCGAGATTAGTAGCTCAAGGGTTTTCTCAAAGGCCAGG
-AATTGATTATGATGAAACCTATTCACCGGTTATGGATGCCACAACTTTCAGGTTTTTGAT
-AAGTCTGGCGATTGAATATGGGCTTGATTTACAACTGATGGATGTTGTAACAGCATACTT
-ATATGGGTCACTGGATTGTGAAATATATATGAAAATCCCTGAAGGGTTTCATATGCCTGA
-ACGATATAGTTCTGAACCCCGTACCGATTATGCGATTAAATTGAATAAATCCCTGTATGG
-ATTAAAGCAGTCAGGACGAATGTGGTATAACCGTCTAAGTGAATACTTGATTAAAGAGGG
-tatactacgcgactagactacgatactagggacagcatattacacccagagaacagacta
-tatactacgcgactagactacgatactagggacagcatattacacccagagaacagacta
-ACAAGGTGGCGACAGTGGAACATGGCCCGATCGAGGACCAGCGTGAAGTCACGCATAACA
-TGGAACCAATCGGGTACAAGAACGTTTCACTATCCTCTTCCGACGGAAGGAAGAACGTCA
-AGATTGGGGTGCAAATGCCCCCAAATATCGAAGAACAACTCATCCAGGTCTTGACAGAGT
-ATCAAGACATCTTTGCTTGGGACATCTCCGAGGTCCCTGGAATTGATCGGTCACTGATGG
-AACATCGCATCAATACCGATCCTGAGGCCGTGCCCGTTCGACAAAAAAGGAGACGCTTCT
-CTCACAATCTGTGATCAACCCGAGAGAAAATGTAAGCGCTGTAACGCTGAGGAGTGGAAA
-GGTTGCAGATGAAGCAATCCAGAAGAAGAGGAAATCGCCTAAAGAAGCAGCAACAAAACC
-AGAGGATGAGAAGGAGGTCGAAGCTGCTGAACCAGTGACAGAACCCACTGCCAAGAAACA
-GAAAGAACCAGAGGTCGAGGTAACAAAGGAAAAATCTGTTATTAAACCTTACTATGAACT
-TCCACCTTTTCCAGGGAGGTTCAAGCTGGAGAAAAAGCAAGAGGAAGAGAAGGAGTTGAT
--- a/test-data/vyber-Ty1_01.fasta	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1015 +0,0 @@
->Acoerulea195_58_rc
-CTTTCTGAAACCGGCACGAAGTGGTTTGACATCAATTTTGTGACAAAATGTCTTTGGTTA
-TCTCGCCTTGAATTCATTGTTAGGAAAATCAAGATGTACGCATGGTCGTCTCGTGTCCTT
-GTGTCTCTTAGGTCTGTCCAGGAAAAGTTATTAGGTTCTGGACGTACGTACCGAGTTAGG
-ACGTACGTACGTTCACTGAAGCAGCAAACATCTTTTGGTCAGGACGTACGTACTCAGTTA
-GGACGTTCGTACGTCCAAGTAGGCAGCAGACGTGTTTTCGTATGGAGACGTACGTACCGA
-TTTAGAGCGTTCGTACGTCATGTTAGGCAGCAGGCTTATTTTTGTGTGGCGACGTTCGAA
-CGTCATATCGACGTACGAACGTCCAAAGTCGGTTTGCACTGTTTCGGCCCATTTTCCTAG
-GTTTTCAACCGTAAGTATAAATAGGGTTTCTCTTCCATAGAACAAGATAGTTCTTTGGCC
-GTCCATCCTTCTTCTTGTTCATGTGTTTTGGTTAGGTTTTTGATATTGAACTTGTTTGTG
-GCTATTGAACTCAATTCCCTTTCTTCCCTCTTTTCTCAATTCATATCTTTGTGATCTTCA
-AGAGTTATTGTGAATTCGGCTTCGAGTCTTCTTGTGTGTTCATCAAGAAGTCGAGTGTCT
-TGTGCGTACATCAAGGTGCTCTGGTGAAGTCAAGGTGTTAGAGATAACCAGGAGTATCAA
-CTCGCAGTGAGTGCAGGTAGTTGATAGGTTTGTACATCTCTTTTCATCTAGTGGATTATT
-TTGTTGTCGCGAGGACAACCGTGGACGTTTCCCTGTTTGGGTTTTACCACGTTAAAAATC
-TCTGTGTGTTATTTACTTTCTGCGTATTGTTTGTTTGCTTGTTTGAATTCACATTTGTTA
-TACTAGCACTATTTGTAGTTTCTCAATTGGTATCAGTCGCTGGGGGCTGGTTAAGGAGCG
-TAAAGGCTCACGCTAACGATCAATAGTGCTATGGATTACTCTGGTAAGACACATGTCTCG
-GTGGTTGCTCGACTCTCTGATGAGCAGTCCATTGACAGTAAAGAATGCTCTAGTAATTGT
-GACAGGGATTTGATTCTGGTGGACAATAATGATTGGGCTACCCTATACCGGTTATCCAGA
-AAGGAATGCCTAAGGTTGGAGGCACAAAATTGTATTCTTCAGGATAGACTTGACTTATTG
-ACCTCTAGTTCCTCATCTATGTCAATCCTGGATAGGGAACCTGTATCATGGCAGGTTGAT
-AAGGTGGCTTTACTGGGTAATCTTGCTGCTCTTGAGCATGACAAGGTCGAATGGGAAGCT
-CGGTATAAGATTGTGTCCTCAGAACTAGACAAGGTCAAAAAGGAGTTGATTCGCTTTCAG
-TCGTTCGAAAAGTGCAATGGGTTGTCATCTTCTGAATTACCTCCACTGTTGCCCCATCCT
-CCTACCAAAAAGTCCGACATTCATCACTCTGTGGACACGGTTGGCATCCGGCGTAAGTGG
-AAACTGTTCAGGCGTGTTCCGCCTCAGGGAAGGAAACGTCAAATGCCGTGCTCACTATGC
-GGACAGTTTGGACATTGGGCCTCGCAGTGTGGTGTGGCTGCTCATGTTCCACAATCATGG
-AAGCCGTTTTCACAACCGTCGTATGATTATCCATCTTATCCATATGCCTCTTACTCTTTT
-CCTTGTAACTTTGCAGGAAATGTTTCAAATGTGGCGATTACTGCCCTTCATGTCTCAAGC
-TCGGATAGTGAGTGGTTACTTGATAGTGGAGCTTCAAAACATATGTCAGGTAATGCCAAA
-CTTTTCTCCTCCGTTACTGCTATAGATGGTGGAAGTGTTACTTTTGGGAATGGTAAGAGC
-TCTCCTGTGATTGGTAAGGGATTTGTCGCTGGTATTGGTTTATCTCCGAATGATGTTTGT
-TTGTTAGTTGATGGTTTGCGTGTAAATTTGATCAGTATTAGCCAACTGTGTGATACTGAC
-CATACTGTTAATTTTTCCAAAAATATATGTACCGTGCTTGATAGTTTGGGTAAGTGTATC
-ATGACAGGTAAACGAACATTGGATAATTGCTATGCCATTCAGCCTGTTACATCTAGCATG
-AACTGCTTACCTAGCAAACTAAATGAGGGTCTATTGTGGCATCAACGACTCGGTCATGTC
-AACTTTGAACACCTGGACAATCTAACTCGGAATGAATATATTAAGGGAGTTCCTAGACTT
-GGAAGAAATCGAGACACTGTGTGTGGTGGGTGTCAACTAGGTAAACAGATACGTAGTCCA
-CATTCCAAGAAAAAATCCATAACCACATCTTCTCCTTTAGAACTCATACACATGGATCTG
-ATGGGTCCTACTCGTACTCCTAGTCTAGGAGGCAAACGATACATCTTGGTTATGGTTGAT
-GACTACACTCGCTTTACCTGGGTATCATTCTTGCGTGAAAAATCTGATGCGTTTCTTGAG
-TTTCAGGGGATATGCCTTCGTATTCAGAACGAGAAAGATACTCAAATTAAACATATCAGA
-AGCGATAGAGGTGGTGAGTTCACAGCCACAGGTGTGATTGAGTATTGTATTGCAAATGGT
-ACATGGCAAGAATTTTCGGCTCCATACACTCCGCAACAAAACGGAGTCGCTGAAAGGAAA
-AATCGTGTTATTCAGGAGATGGCTCGTGCTATGTTGCATGCAAAGGATGTTCCGACCAAG
-TTTTGGGCGGAAGTGGTTCATACTGCTTGTTACATAATGAACCGTGTATATCTAAGATCT
-GGTACCACACAAACTGCTTATGAGCTATGGTATGGTAAGAAGCCGAATCTCAAATATATG
-CGAGTTTTTGGTAGTGTGTGCTATGTGTGCAAGGACAGACAAAGTCTGTCCAAGTTTGAT
-AGTCGAGGTGAAGTAGCTCTTTTACTTGGTTATTCTTCTAACAGTAGAGCCTTTCGAGTG
-TTTAACTACACCACTCGCAAGGTCATGGAATCCTTTAATGTTGTTGTTGATGACACTATT
-ACATCTGACTCTTCTGTTTCCACTGGTACACAGGATGTCACAGTTCTCTCACCCGTGTCA
-GACCCGGCTGACATGTCTTCCATATCGTTATCATCACCTGATAATGGCAATGGTGGTACT
-AAACCTTCTGATGCTGCAGAGGACGTGCCTAGTAGGACCGGTGCTGTGCTCACACCGGAT
-GATGTGGTTCAATCACCAGATGTGATTGATGTGTCTTCAGATCTCTCCACTGTCCCTGCT
-GACCCTGAAAGGGTGTTTAATCTAGCTTCACCTCGTGTCAAACAATATCACTCCTTAGGA
-GATATCATTGGGGATATTAATGATCAGCGTCTGACTCGTCGGAGGGCCAAGGAGACAAAT
-TGTGTTCATTATGTTTGTTATCTCTCTTCTCTTGAACCTAAAAATGTTACTGATGCTCTT
-ATTGATGATGATTGGCTAGTTGCTATGCAGGAAGAACTCGGTCAGTTTAAGCGTAGTGAT
-GTCTGGACGTTGGTTCCTAGACCTACTCACACTAATGTGGTTGGCACCAAGTGGATCTTT
-AAAAACAAGTTGGATGAGTTCGGACAGATTGTGCGCAACAAGGCAAGGCTCGTAGCTCAG
-GGCTACAGTCAGATTGAAGGTATTGACTATGGAGAGACATTTGCTCCCGTGGCTAGGTTG
-GAATCTGTCAGGCTTCTTCTTGCTATGGCATGCCACTTGAATTTCAAGTTGTATCAAATG
-GATGTCAAAAGTGCATTTCTCAATGGTATTCTTAATGAGGAGGTCTATGTTGAACAACCT
-AAAGGGTTTGTGGATCACACTTTCCGAATCATGTCTTCAAATTGCAAAAAGCACTGTATG
-GGTTAAAGCAGGCTCCTCGAGCTTGGTATGAACGTCTGACCTCCTTCTTACTGGGAAAAG
-GATTTGTTCGTGGCAGTGTTGATCGGACTCTGTTTATACTGAGAAAGAATACTGATGTTC
-TTCTCGCCCAAGTCTATGTGGATGATATAGTGTTTGGGTCGACGTGCCCAAGTCTTTCTG
-AATCTTTCTCTCAATTAATGAGCTCTGAATTTGAAATGAGTTTAATGGGAGAACTGAATT
-TCTTTCTTGGCTTACAGGTCAAACAGTTTGATCATGGAGCTTTCATTTCTCAAACAAAGT
-ATGCTAAAGAACTGGTTAAAAAATTCGGTCTCAGCACTTCCAGTGGTCAAGATACTCCCA
-TGGGTGAGAGGGTACGTCTTGGTAAGGATATTATGGGTAAGTCTGTTGATATTCGTGAAT
-ATCGGAGTATGATTGGTAGTCTTTTGTATCTCACTGCTAGTCGTCCAGATATTTCTTATA
-GTGTTGGGGTATGTGCAAGATTTCAGGCTAACCCTAAAGAATCTCATCTCATTGCGGTTA
-AGCGTATTATTCGGTATGTTGCTAGCACTCTTGACTACGGGTTATGGTTCACCAGAGATA
-CGAATAGTGTTGTGGCAGGTTATTGTGATGCTGATTGGGGTGGTAATCTTGATGATCGTC
-ATAGTACCAGTGGTGGCTGTTTCTATGTTGGGAATAATCTTGTTTCCTGGCATAGCAAGA
-AACAATCATCTGTATCCATCTCTTCATGTGAGGCTGAGTATATAGCTGCAGCTAGTGCAT
-GTACTCAACTTCTGTGGATGCGTCAGATGCTTCGGGATTATGGCATTCAACAGCAGGCGA
-TGGACCTGTTCTGTGATAACACCAGTACCATTAGCATTTCCAAGAATCCTGTTCAACACT
-CACGCACAAAGCATATTGACATTCGTCACCATTTCCTTCGTGAGGCGGTCGAAAAGGGTG
-ATATAGTAATGGAGTTCATTCCTACAGAACATCAGCTAGCAGATATTCTTACAAAACCTC
-TTGATGCAGGCCGATTCCATTCCTTGCGTAAGTCTATTGGGGTTGTAACTCTCCCCTAAT
-TGTTTTGTTACTTTCTTTTTCTTTCTGGTATTGTCATTGTGGTTAGGATGTTTAGATTCG
-GTGTTTTTGGTGTTTATTATTATTGTGGTTGTTTTTGAGGACATACTACCTTCTCTATTG
-TGTGGATTCCATTTTACAGATGTTTCTAGTTTGGCGTTCTCAACTGTCTTTGTGTCATGC
-ATGGTTGTAAGGTTACATTATACTCTCTTCGTTTTGGTAGTTTCTTGCATGATGCATGTC
-AATGTGGTTAGCTTGACCTTTTCAATACATGTATAACTCCAGTTTTCCATGGTTGCTTTT
-CATGATCGTTGTTTTTATTTTCTTTATTTTCTCACCTCTTGTAAGTGGTCAATTACTCAC
-AAAATCCCCAGCCATTTGAATGTCTTGAGAGCATACTCATTTGGCTAAGAACCCGTTGGG
-GCTGTGAGGGTCATGCTCTGACGGATGCACTCAGGAGATGTTAGTTCTTGTGTTGCACGT
-TATCATGGTATTGCTCTTCTTGAGTGTGTTTTGCCGAAAAGATGTAGGCTACACCCTACC
-CTCGTGTTCTGGTAAAAGATGGAGATACTTTATACTCCCACACGGGAATGGCATTTTTTT
-AACAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGATGTTAAGTGTCTGTCATAC
-TTGTCTAGTTAGAAGACAAGAAGAATGCCAGTTTTTCGGTGTTTACTTGCAACAGACTTT
-CAAGGTATTCCATGATCTTGTTTTTAGTTTGTTTTCGGAGGTTGGTATTGGTCTATCAGG
-TTCTTCTACATGCTTGCATCATTCTAGTAAGTACCATGTCATGGTGTATGATGTCGTTCT
-ACGATTTTGCATTGTCTTGTGGTTGAGGGTTGTTTATACTGTATTCGGCTGTACTTGGGA
-ATCCTTATGATAAGTAGAAGTGTTTTCTTGTGATGTCTCTCAATATTTGTACCATGTCAT
-GGTGTATGATGTCGTCTACGATTTGCATTGTCTGGTGGTTGAGGGTGTTTATACTGTATT
-CGGCTGTACTTGGATCCTTATGATAAGTAGAAGTGTTTTCTTGTGATGTCTCTCAATATT
-TGTTCTTGCCTTCTTGGTAGTTCTTTGGTATATTATCTGACTGGTTGGGTGGTTCTTCAT
-TTTTTTTGGTATATATATATATATATATATTTCTTTTCAAAAAAAAAAAAAAAAAAAGGA
-TTCGTACGAACGCTTTCATGACGTACGAATGTGATCTTAGTCAGATTGTTAGTTTTTGGG
-TCCCGAAGTTCGACCGTGTTCAGAACGTACGAACGTCTGTCATACAGTCCGGCCAATTTG
-TGTTTAAATTCAAATTTTTTTTTGAACCAAAGGCTTACTGTTACATCAATCGTGCCCCTT
-TCTTCTCTCTTGTACGAACATAGGAAGTCTTCACCTTCCCTCAAGGTCTTCTCTTTGGTC
-TTTTCCTTCTTCTTCTTCTTTGGTGGTTGTTTATTGCTTCTCTCAAGCAGCTTGTTTCTA
-TTTCTTTGGTATTGAGGATGTTCTTGGATATTGCTATTTTCATATTAGTTCAAGTTGGTT
-TCTTTGTTTTGCAGTTTTTTTTGGTAATGGACCTCTTATTGGGCCCATGATAGGTTTACC
-TCTGTTTCCCCTATATATAGGGGAGTCTTCTCCTCTTTTACCCCTATTGTATCTTCTTCT
-CTCTTGCTAGTTCTATCTTTGTTCATCAGAATTTTCTATGACAGAATTTGCACTTCATGG
-AGTTTTTGTTCCGGCTGTTGGGTATGTGTCGTTTATGGTCATGGAGTACAAAAACAATGC
-TAAGGTTTGTCGTTTATGTCGCGTTCCTCATGGGTATGACTATGATCATCGACCTTTACT
-TCCTTCATGCATGGTTCATATCAATCATTGGGAGAGGCTACCGGGACATCTTCAGAATCA
-CATCTTGGAGTTGGTTGGATACCCGAAGGTTCCAGGACTTGCTGCTCCTCTTACCGACTG
-TGGCTTGGACAGCAGAATTGGGGAGTTATTTTGTACGAGTGCTGATAGTCCTGTGCAAAC
-TCGGTGGAATAGCTATTCGGCTCGTGCGAAAGCTTTATGTCCTATCTTAAGCTTTATGTT
-CATATGATCGCTCGGTGGATTAGACTTCGGCTCGTGTGGAAGCTTACTTCTCCAAGCTTC
-GTTATTTCAAGCATTATTTTTTTTGTTATGGATTCCTTTGGTTGGTTATTAGTTGATTTT
-CTGAACTTTTAACAGTTGGGTTCGGTTTATATTTTTATCTGTTTTGTATTCTTTGTTTGG
-TATTGATTTCTTCTTCTTGATTATTGGTTTATTGTTGTTCTTTTCCTTTATTGGTTGGTT
-ATTTTGTTCACTTGTTGTGACAAAAAGGGGGAGATTTATGACTCTAATTACTAACAATCG
-TCTTCTTGTTGTTAGGTTATTTTTTTTGGGTCATGTTTCAGGTATGCTACACTTATGGGG
-GAGCTCGTGTGTCAAAATTTTGGAGCTCATGAAGTATGGGGGAGTTGCTCGAAGGAACTT
-CTGTTGAATCCTTGATTGCTTCCGTTCGATCTCTGATGGTTAAAGCATCTTCCTAAAGCT
-GGATAACAAGAATTGGTGACTTGTTATGTGTTTCTATTTTCGAGTGTTTTTGTAGGCATG
-TTTTATAAATGCCATGGTTTGGGATTGTAAGCACGTTTTATAAGTGCTATTAGAGTCATA
-GGTTTTTGTCACAAAATCAATGTCAAAGGGGGAGATTGAAACCGGCACGAAGTGGTTTGA
-CATCAATTTTGTGACAAAGTGTCTTTGGTTATCTCGCCTTGAATTCATTGTTAGGAAAAT
-CAAGATGTACGCATGGTCGTCTCGTGTCCTTGTGTCTCTTAGGTCTGTCCAGGAAAAGTT
-ATTAGGTTCTGGACGTACGTACCGAGTTAGGACGTACGTACGTTCACTGAAGCAGCAAAC
-ATCTTTTGGTCAGGACGTACGTACTCAGTTAGGACGTTCGTACGTCCAAGTAGGCAGCAG
-ACGTGTTTTCGTATGGAGACGTACGTACCGATTTAGAGCGTTCGTACGTCATGTTAGGCA
-GCAGGCTTATTTTTGTGTGGCGACGTTCGAACGTCATATCGACGTACGAACGTCCAAAGT
-CGGTTTGCACTGTTTCGGCCCATTTTCCTAGGTTTTCAACCGTAAGTATAAATAGGGTTT
-CTCTTCCATAGAACAAGATAGTTCTTTGGCCGTCCATCCTTCTTCTTGTTCATGTGTTTT
-GGTTAGGTTTTTGATATTGAACTTGTTTGTGGCTATTGAACTCAATTCCCTTTCTTCCCC
-CTTTTCTCAATTCATATCTTTGTGATCTTCAAGAGTTATTGTGAATTCGGCTTCGAGTCT
-TCTTGTGTGTTCATCAAGAAGTCGAGTGTCTTGTGCGTACATCAAGGTGCTCTGGTGAAG
-TCAAGGTGTTAGAGATAACCAGGAGTATCAACTCGCAGTGAGTGCAGGTAGTTGATAGGT
-TTGTACATCTCTTTTCATCTAGTGGATTATTTTGTTGTCGCGAGGACAACCGTGGACGTT
-TCCCTGTTTGGGTTTTACCACGTTAAAAATCTCTGTGTGTTATTTACTTTCTGCGTATTG
-TTTGTTTGCTTGTTTGAATTCACATTTGTTATACTAGCACTATTTGTAGTTTCTCACTTT
-C
->Egrandis201_33_rc
-CAGTGTGTTGAAAGAAGATATATTTTGAAGATATGAAATTTGATTGAAGATTGTAATTGA
-TTGGGATTGTAATTATTTTAGGACTAGGAATATTTTCTTTACTTCTTTGTTGAATTTCCT
-TGTATAATATATACATCCCTGTAACAATGTACAATTCAATGAAGAAAAATACAATTCCCC
-ACATCTTCTTTTACTTGAGTTTGTGACATGGTATCAGAGCTTATGCCAATTCTGGTGTAG
-CTTTCATCTCTTTGAATTGCCTGTGTTTCTTCTTCCGTTCCTTGTTGTTGCCACATCGCA
-AAACAAAAACAACATTTGGTAGGAATTCTCTTTTCTTTACCCTTTGTTACCAAGAAAACC
-AATATGCAAAAAACGAGTTGTTGCAATCTTTAGAAAATTCTTCATGACAAACCCAGAAAT
-ACTTACCTCAGCCTCCAGTGATCAGACCGTAGGAATCCGATGCCGACCAACAGAGAGTAG
-CCGATTACAGGAAGAATGGTGAGAGCGTGGCTCTGGCGGCAAAGAAGTTCTCTCTCCCGC
-TACAGAGAGCTATGGGAGGAAGAGAAAGTCTTGAACCCAATCTAGGGTTTCACAAAGAAA
-ACCCTAGGGGGTATCGGTCCATGATGAGTGGCCACGATGTGTCTGATCGATCGGATGGCT
-CCCGATTGTTTTTTGGAGACGCTGGATCTAACGGCTCAGGAAGCAAGGGGATGATAGAAT
-CGAATGGTCTGCGTGGCTCAAATGCATATGGGCCGGATGGCCCACATGGGTGTTACTCAG
-CTTATTCCAATGGCCCGCGAGGTAATTTTCTTGCAAGTTCTGATGGGCCATATGGGGCAA
-CGACGGCCCATGCCATAAATAGGCCCACTTCATTCACAAAAAACAACCAAAAAGGAAAGG
-ATAAGCTGTATCGTGATTATTGTAAACGCCCACATCACACGGTTGAAAATTGCTGGAAGC
-TCCATGGTAAACCTGGCGAAAAAGAAAAAGGGAAATTTTCAACTGTTTTTCAAGTATTGG
-GTAAATCAGCAAAAAAATCAATTTCTCATGGGGAATATCAGGAGCTAATGGAAGCCTTAA
-AGAAGTTGGATGCCTCTGACAAGGCAGGGAGTTTCACAGGTATTTCTCATTGTTTGATGA
-ATTCGATTACAAATTATGCATGGATTATTGATACTGGAGCTAGTGATCACATTGTCTGCA
-ATCAATTTTTTTTTTCCAACATTGAGAAATTACCCTTTCCTATATCAATACAACTCCCGA
-ATGGAAACACCACACATGTTGGTATGACTGGGACCGTGAATCTTAGCCCACTCATCACTC
-TTAACAATGTCCTTTATGTCCCTAGTTTCCAATTTAATCTCATATCAGTCTCTTGAGCTT
-GCGAAGAAAATTCCTGTCATGTCTTGTTTGACTCTGATAAATGTCTATTTCAGGCCCTTT
-CGACTAGCAAACTGATGGGCTTGGGTAGAATCTATCAAGGATTGTATTTTTGGATCGATC
-TTCCAAGCAATTTTAAATTCTCTTCTGTTGCATTCAATAAATCAATGTGTAACATTGCTA
-GTAGTGAAAAAAAAATTCTTCATCATCAAAGATTGGGCCACACTACTTCTTTCCCTTATC
-CTCAATGTCATATTTGTCCTTTGGTGAAACAAACTTGTGCTCCCTTCCAAACTAGTAACA
-CTCGCTTGGACAGCATTTTTTCTTTAGTTCATGTTGATGTCTGGGGACCATATCACACTT
-TGAATCATGACGGTTCATGGTTTTTTCTCACAATTGTGGATGATCTCTCACGTGCCACCT
-GGGTCTTTCTCATACAATCAAAAAATCAAGTCCTATCTCACCTTAGAATTTTCCTCTCTT
-TATCCAAAACTTAGTTTGGAAAGTCAATTTGTCGCATCCGTACTGATAATGGAAAAGAAT
-TATTCAGTGGTGAATGTGCTTCCTTTTTTTCCTCAAATGGGATTTTGCATGAAAGTACTT
-GCACCTATACACCACAGCAAAATGAAGTTGTTGAGCGAAAACATCGCCATCTTTTAGAAT
-TGGCATGGGCCCTTAAATTCCAAGCATCTATACCAGAAAATTTTTGGGGAGATTGTGTGG
-TCACTGCAGTGTATCTGATAAATTGTATGCCATCTCGCATTTTGAAAGGAAGAACTCCGT
-TTGAATTATTATATGGAAAGAAACCAGACCTAAGTCATCTTTGAGTGTTTGGTTGTCTCT
-GTTATGTGACTACAGTAGGGTCTCGGGATAAAATGGGCCCTCATGCTCGCCAGTGCATTT
-TCATGGGGTATCCCAATCTTAAAAAGGGTTATCGAGTTTATGAACAGTCTACTGGGGAAT
-TTTTTATCAGCAGAGATGTGGTTTTTCATGAAGATACTTTCCTTTTCCGGGATTCCACTT
-CCATGTCTGCGAATGATGTGGGCATTAATCGCAGATTTCTGTCAGAAGAAGATTTATCTT
-CTGGAGGATCCTATGTTATTACCTCTCCTCCAAGACAACAGATAGTGGATATAGTATCAC
-CTTCACCACCTGATGAGCACTCTACTGGAAAATTCAATTGAAGAGCATTTCATGGAGCAG
-GAACCTCAGGTGACCAATTCCATAGAATCATCAAATATTGAAGAACCATCGTTGGAAGTG
-TTGAATGAGCCATCGTGATGATCTGGTCGAGTCACTCGTCCACCAGCTTGGACAAAAGAT
-TATGCATGTTCTTCATCAAAATCGTCAGGTACTCACTATCCTATCTCCTCCATGTGTCTT
-TTGATTAGTTGTCATTAGAACATTTATGTTGCATTAGCCGCATTTCTGAGGAACAAGAGC
-CCTCTAGTTATCATGAGGCTGTACATGATCCACGTTGGCAAAGGGCCATGGAGGTAGAAC
-TTAAAGCCCTAATTGACAATCACATCTGGGATATCGTATCGTTACCTCCCCATCGCAAGC
-CCATTGGCTGTAAATGGGTATATAAGATAAATACAAAGTAGATGGTTCTGTGGAAAGGTA
-CAAGGCCCGGTTGGTGGCCAAGGGGTTCACATAGAGAGAATGATTTGACTACCATGAGAC
-TTTTTCTTCAGTAGCCAAGGATGTCACGGTTTGCTCTTTCTTGTCGGTTGCTGCTTTTCG
-CAATTGGTCAATGCATCAAATGGACATCCACAATGCCTTTCTTCATGGTGATCTAGAAGA
-AGAGATTTATATGGATCTTCCACAAGGATTACGGAGACAGGGGGAGTCAAAGGTATGTCG
-TCTCCGCAAATCTCTTTATGGTTTGAAATAGGCTTCTCGGCAGTGGTACACCAAGTTTAC
-TAATGCACTCACGGGTGCCGGATTCAAGCAGTCCAAGCATGATTATGCTCTCTTCACTTG
-GACAAAAGTTACATCGTCTATCTACTTGATGATTTATGTTGACGACATACTTATCATGGG
-AAATGATGATTCCGTTGTGAGGAAGCTTAAGGAGTATCTACATTCCTCTTTTCATATCAA
-AGATTTAGGGTCACCTAAATATTTTCTTGGAATAGAGATAACTCGTTCTGATCAGGGGAT
-TTCTCTTAGCCAAAGAAAATTTGTGATGGAGATTATATCAGAAGCGGGATTATCGGGATG
-CAAACTGGCAGTCATTCCCATTGAACAAAATGCCAAGTTGACCAATGTTGATTATGACAC
-TGTAATGTCTTCCTCTGACGATCCATTATTGAAGGATTCGACAAGTTATCAGAGACTTGT
-TGGAAAACTTATCTACCTCACCATGACTAGGCTAGACATTTGTTATGCTGTACAGACTCT
-TAGCTAGTTCATGCACAGTCCAAAGCAATTGCACATGAACGCAGCCTTGAAGGTGGTAAA
-ATACCTGAAGAAATGTCCAAGACTAGGGATACTTCTTTCTCGAAAATGCAATATGGAGAT
-GATAGCCTATTGTGATTTGGACTATGCTACATGTCCCATGAGTAGGAGATCTATCATTGG
-TTTCTGTATTAAGTTTGGGGAATCACTACTTTCATGGAAGACAAAGAAGCAATCTACTGT
-ATCGTTATCATCAGCAGAAGCTAAGTATCGATCTATGGCAAAGACTGTCTGTGAGGTGGT
-ATGGTTACGAGGTCTACTTCAGGATCTTGGGATACAAGTTAGAGGTCCGACATTACTCTT
-TTGTGATAATGACTCAGCAATCAAGCTTGCAGCAAATCCCATATTACATGAGAGGACGAA
-GCATATAGAAGTTGATTGCCATTTTACACGAGAGAAGATCAAAGAAGGTATCATCAAAAC
-AAGAGGGATTAGAACCACGGAGCAACCTGCAGATATATTTACTAAACCTCTTTGTCAGAG
-ACAACATGCATATCTTCTAAACAAACTAGGCGTCTTGGATATATACAAGCCACCAGCTTG
-AGTGGGAATGTTGAAAGAAGATATATTTTGAAGATATGAAATCTGATTGAAGATTGTAAT
-TGATTGGGATTGTAATTATTTTAGGACTAGGAATATTTTCTTTACTTCTTTATTTAATCT
-CCTTGTATAATATATACATCCCTGTAACAATGTACAATTCAATGAAGAAAAATACAATTC
-CCCACATCTTCTTTTACTTGAGTTTGTGACACAGTG
->Gmax275_361_rc
-ATTAAGTGTTAGAGTTTGTGGTCTTAGTTCCTTTGTCCCACATCGCTTAGTCTGTAAAAC
-TTGTGTGGTCTTAGTCCCACATCGCTTGGTTTGTAAAAACTTGTGTCTCATTAGTGTTAT
-ATATAGAGACACCTTGTAAGCCTTTATGTGCAAGTAATAAAAAGTTCTCCTAGTGTAGCC
-GTGGACGTAGGCACATACATTGTGTGCTGAACCACGTTAAACTGTGTGTCTTTTTCTTTC
-TTCCCTTTATTTCTTTCTCTTCTTTTATTGCTCTATACTAACAACTGGTATCAGAGCTTT
-TGGTTACTCCACGGGATTTCCTTAGTTTAAAGGAATTAGTGGGAGTCTTCTCAGTTTAGA
-GGAGGCAGTGGGAGCAATGGCATTAGAAGAGGGGAAGGTGAAGATCGAGAAGTTCGATGG
-CAGAGATTTCAGCTTTTGGAAGATGCAGATAGAGGATTATCTATATCAGAAAAAGCTGTA
-TCAGCCCTTATCAGGGGTTAAGCCAGAAGACATGAAGCAAGAAGAATGGAACTTGCTAGA
-TCGACAGGCTCTTGGCGTGATCAGATTGACATTAGCCAAGAGCGTCGTGTTCAACATCGT
-GAACGAGAAGACTACTGCAGGCTTAATGAAGGCATTATCAGATATGTACAAGAAGCCGTC
-AGCAGCCAACAAAGTATACTTGATGCGCCGGTTGTTCAACCTCAAGATGGGAGAAGGTAT
-CTCTGTAACTGATCATATTAATGAGTTTAATACTATTCTTGCCCAATTGGAATCTGTGCA
-GATTAAATTTGAGGATGAGGTGAAGGCATTGATTCTATTGTCATCACTACCGGATAGTTG
-GGCTGCAACTGTTACTGCAGTTAGTAGTTCTACAAGGGAGAACACATTAAAGCTTAGTGA
-CATCCGTGACTTGATCTTGAGCGAAGATGTTCGCAAGAGAGATTCAGGAGAATCTTCCAG
-TCATGTTTCCAATTCAGCATTGAATACTGAAGGCAGGGGAAGGACTACCCAGAAGGGTCA
-GAATGGTCGAGGCAGATCAAAGTCAAGAGGGAAAGGTTAGAGAAAATTTCAAAGTGACGT
-TACTTGTTGGAATTGTGACAAGAGAGCTCACTTTAGCAATCAGTGCAAGGCACCAAAGAA
-GAACAAGTCGCACAAAAACAAGAAGCGCGATGATGATGAATCCGCAAATGCAGCAACTGA
-TGAACTTGATGATGCATTAATTTGCAGTTTGGATAGTCCTGTTGATTCATGGATCATGGA
-CTCAGGTGCGTCGTTCCACACTACTCCCTCTAAAGATTTATTGTCTAACTATGTTTCTGG
-AAGATTTGGAAAAGTTTACCTTGCAGATGGAAAATCTCTTGACATTGTCGGAAGAGGTGA
-TATCAACATCAAGACTTCCAGTGGATCCCTATGGACATTGCACAATGTCAGACATATTCC
-TGCCTTAAAGAGAAATTTAATATCTATAGGGCAGTTGGATGATGAGGGACATCACACCAC
-TTTTGGAGATGGAGCTTGGAAGGTAACAAAAGGCAATCTCATTGTGGCTCGTGGAAAGAA
-GCGAGGATCTCTTTACATGATTGCAGATGAGGATATGGTAGCAGTTACTGAGGCTATCAA
-TAATTCAACCATGTGGCATCAAAGACTTGGACATATGAGTGAAAAAGGAATGAAGCTTAT
-GGCGGCAAAGGGTAAGCTATCAAGCCTCAAGCATGTTGATGTTGGTGCTTGTGAACATTG
-TATCCTTGGAAAGCAGAAAAAGGTCAGTTTCTCAAGGGCAGGGAAGACTCTGAAAGCTGA
-AAAGCTAGAATTGGTGCACACAGATGTTTGGGGGCCAGCCCCAGTGGAATCTGTTGGAAA
-CTCACACTATTATGTCACCTTTATCGACGACTCTACCAGAAAGGTATGGGTTTATTTTCT
-TAAAAATAAATCTGATGTGTTTTCTGTGTTTAAAAGGTGGAAAACAAAAGTTGAAAATCA
-GACAGGTTTAAAGGTTAAAAATCTGAAATCTGACAATGGTGGGGAGTATGATAGTCAGGA
-GTTTAAAGACTTCTGTTCAGAACATGGGATCAGAATGATCAAGACAATACCAGGAACACC
-TGAGCAAAACGGTGTTGCAGAAAGGATGAATAGAACCTTGAATGAGAGAGCAAGGTGTAT
-GCGGATCCAATCTGGCTTGCCTAAAGCATTCTGGGCAGAAGCAATAAACACAGCAGCATA
-TCTCATCAATAGAGGACCATCAGTTCCTTTGAATTATCAGTTGCCTGAAGAAGTATGGTC
-TGGAAAGGAGGTAAAACTTTCACATTTGAGAATTTTTGGTTGTGTTTCATATATACTGAC
-AGACTCTAATAGTAGAGATAAATTGGATCCGAAGGCGAGGAAGTGTTATTTTATTGGTTA
-TGGATCTGACATGTATGGCTATAGGTTTTGGGATGACCAAACCAAGAAAGTTATCAAAAG
-CAGAAATGTTACTTTTAATGAGAACTTATTTTATAAGGACAAATTTTCTGCAGAATCTAC
-ATGTGCAGGTAAACTGTCAGAAATTTCTGAGAAAGCAACACTTGAAGAAATCTCAGAAAG
-TGATGTAGCCAACAGAAACCAGAGTACAAGCGTAGAGGTTGAGTCAGAACCAGAACCATC
-AACTCCTCCAAGAAAATCCAGCAGAATTTCAGTACCACCAGATAGGTATTCCCCTTCATT
-GCATTATTTGTTGTTAACTGATGCTGGTGAGCCAGAATGTTTCAATGAGGCTACACAGGG
-GAATGACACTATTGAGTGGGAGCTAGCGATGAAAGATGAGATGACATCCCTTCAGAAGAA
-TAAGACGTGTGGTCTTTAACTGAATTTCCAGAAGGAAAGAAGGCGTTACAGAATAGGTGG
-GTCTATAGGCTAAAGGAAGAATCTGACGGTAGAAGAAGATACAAGGCGAGACTTGTGGTG
-AAAGGGTTTCAGCAGAAACAAGGAATTGATTTCACAGAGATCTTCTCTCCAGTTGTAAAG
-ATGACTACCATCAGAGTTATTCTGAGCATAGTAGCTGCAGAGAATCTTCACTTGGAGCAG
-TTAGATGTTAAAACTGCATTCTTGCATGGGGATTTAGAGGAAGACATCTATATGACCCAA
-CCAGAAGGTTTTGAAGTGCCAGGCAAGGAGAATCTTGTATGCAAGCTTCACAAAAGTTTG
-TATGGCTTGAAACAAGCACCGAGGCAGTGGTACAAGAAGTTTAATGAGTTTATGAGCAAC
-TCAGGATTCAAAAGATGTGACATGGACCATTGCTGCTATGTTAAAAAATATACTAATAGT
-TATGTTATCCTTGTTGTGTATGTTGATGACATGTTGATTGCAGGATCTAGTATGGCAGAA
-ATTAACAGGTTGAAGCTGCAGTTGGCAGAAAACTTTGAAATGAAGGATCTTGGTCCAGCT
-AAACAAATCCTTGGTATGAGAATTCTTAGAAACAGATCAGAAGGAATTTTGAAGCTGTCT
-CAGGAGAAATATATACACAAGTTGCTTGACAGGTTTTACCTTGGAGATTCTAAGACCAGG
-AATACCCCTTTGGGATCTCATTTGAAGTTTTCAAAGAAGCAATCTTTGCAGACAGATGAA
-GAAAAATGTTACATGTCAAGAGTACCATATGCATCAGCAGTTGGGAGTTTGATGTATGCT
-ATGGTGTGTACCAGACCTGACATAGCACATGCAGTGGGAGTTGTCAGTAGGTTCCTATCA
-AATCCAGCAAAGGAGCATTGGGAAGGTGTAAAGTGGATACTCAGATATCTGAAGGGTACT
-TCAAAGATGTGTTTGTGCTTCAGAAAAGGCAATCTCACTTTACAGGGATTTTCATATGCA
-GACTTGGGAGGAGATTTTGATACCAAGAAGAGCACCACAGGCTACATTTTTACCTTGGGA
-GGTACTACTGTGAGTTGGAAGTCTAAACTTCAAGATAGAGTTGCTCTCTCAACCACGGAA
-GCCGAGTACATAGCTATCTCAGAAGCAGCTAAGGAGATGATTTGGCTAAAGAATTTTCTC
-AATGAATTGGGGAAAGAACAAGATGATGCTCCAATGTTTAGTGACAGTCAAAGTGCTATA
-AGTCTTGCTAAGAATCCAGTCTTCCATTCTAGATGCAAGCATATTCAATTAAGATACCAT
-TTTATCAGGGAGTTGATAAATGATGGAGACTTATCTTTATTGAAGATCTTAGGATCAGAG
-AATCCAGCAGATATGTTGACTAAAGCTGTTACCACTGACAAACTGAGGCTTTGCATTGCC
-TCAGTTGGCCTTCAAGGATAATTGAAGATGAAGGCGCTACACTAGGTAAAGAGTCGATGA
-ACTCATTGCTTACAAGGAGCTGCTAGAGTTTGGAACTTAGACCCCAAGTGGGAGAATTGT
-TAGAGTTTGTGGTCTTAGTTCCTTTGTCCCACATCGCTTAGTCTGTAAAACTTGTGTGGT
-CTTAGTCCCACATCGCTTGGTTTGTAAAAACTTGTGTCTCATTAGTGTTATATATAGAGA
-CACCTTGTAAGCCTTTATGTGCAAGTAATAAAAAGTTCTCCTAGTGTAGCCGTGGACGTA
-GGCACATACATTGTGTGCTGAACCACGTTAAACTGTGTGTTTTTTTCTTTCTTCCCTTTA
-TTTCTTTCTCTTCTTTTATTGCTCTATACTAACAATTAAG
->Sitalica164_1034
-TTAACTGTTGGAGGTATGCCCTAGAGGCAATCATAGAGATGATGATATTCCATTTGTATC
-CATGATTTGTATATTGTGTTCATTGAATATCCATTGAAGGCTACTTGAATTGATTTGCAA
-TTATATGAATTGTATGTAAAACTCTTTACTTGTATGGTTATTCTAAAGTTGTCCCTAGTC
-GGAGTTCATGTGAGGACACACATGAATATTACACTAGCACATGTATTAGTTGATGACTAT
-GTTTCACAAGTCATGGACATGGAGATGTTGAACTAATAATGTGGACACATGTGGAGATAT
-GTGCTAGGACTGACCCAACACGAGAAGTAGTTCTCTCTTTAAACAACATATACGCTTTGT
-CCTTAGACCTGAGATTGTCGCATGTATTCTAGATGTGGATCGACCTACTTAGGGGCTATC
-AAACGCTACGCCGTAACAGGGTAGTTATAAAGGTAGTTTTCGAGTTTGTCAAGAAGCATG
-CTATGAGACATGGTCAATCAAGATGGGATTTGCCCCTCTCTGATCGAGAGTGATATCTCT
-GGGCCCCTCGAGTGATCGGATCCGAAAATGCATGGCCATGCTACGTACGGTTAAGAGTTA
-ACCTACAAAGGGATTCCGAATCACAGGATCGAGAAAGAGCGGTCGGATTGAAGCTAGACC
-AAATATCGTGAGGCAAAGGGAATAGCATGTATATTATGTTGTGATGGTTCGTTTGATACG
-ATCTTCGTGTGCGTATAGGAGTTGGCACGTCTTGCTAGAGGCCGCTACTGACTATTGGGC
-CGAGTAGGAGTACTCGGGCCATGTCTATACGTATCCGAACCCATAGGGTCACACACTTAA
-GGGGCTGGAAGCCCAATTCGGATCTGATCCGAGTTGGATTAGGTTTAGAAGTACTAATGG
-GCCTCGGACCCAGAGGCCCGTCAGGAACCTCTATAAATAGAGGGGTGGGGGGACCCTAGG
-GTTTACACCTTTTGGCGAAACACATCTGTCGCGCCTCCCACGCCCTCGCCTGTTGCAACA
-CGGATCTAGCAATCCGGCTTGCGACGCTTCCTCCCTGCACGTGTGGACACCTTGGAGGTG
-TTGCGCCTGCAGCACTTGGACGAGCCGCCGACGAGCCACGACGAGCCGCCGACGAGCCGC
-GACACGAGGGCGATCTTGCTGCACATGGACGAGCTGCTGAGGAGCTGCTGGACGTTGACG
-TGATCGACTACGTACGACTACATTGATCGTCTTCGCTGCATTGACGCAAATCTACATCTT
-CCGCACCAGTAGTGCGTCGAGTGGTAATCCCGTGATCCTTATACGACAGTTCTTCCTGGT
-TTTACACGGTAGAAATTTTTATTTGCGCTAGTGTAGCCTACCTCGTATCCCAACAGTGGT
-ATCAGAGCCGTAGCTGTTTAGTTTTGGATTCGGGATGTGTGCATATGGAGATATGCGAGT
-TTTCCGTTTGATCTATGTCCTGGTTTCGTGCCCTTGCTGCAATGGTAGTGTAACGACATA
-CTCCTACCGGTCAGTTTCCGCCATCGAAGTTAAGTGATACACGTAAATCCAGTTGCAGTG
-AGCGAAGATCAATATGATTGGTCGAATCAAAATATAGGGTCATACGCCAAGCGCATTAGA
-TGTGCAATAGTAGATGAGATCTACTGCCGGGGTCGGGATTTTTGCCGTATGCGTATGCTT
-CGGTAAATCAGCCGTAACTTTTCGGTACAATCTCGGATCGGGGCGAATTTTAGATGAAAA
-TTGATCTACAGAAAAAGTTACACATGAAATTCAATGGCTTTGCCGTTTTCGGCGAAATTA
-GATTTCCCAAATTCGGCTTGGAAGATGGAGTTTTGGGCATCCGAAGTTTGGAACGTTAGG
-ACGCTTAACTCTGTTTTGCAGGATGTATGTATATATCTTGTGATCAGTATGGCCCCCTTG
-TGTATGTGATGCATGTGTGTAACTCATTCGTGACCTGCGTGTCGTGCGTACGGCAACACG
-GCAGGAGCCATATGTGTTGTCACTTTATTGTATTTAATGGTCTGCGTACCAATCTGTGAT
-GATCCAAGCAACTATGAAATCTTCATTACTAGCTTCTTTACTGGCTATTAGGTGTAATAG
-CATGTTCTAGTTCTTGGAGGGCTCATCACCAGAAGGATGGCGCACATGGAACATGGAGAT
-GGAGATCACCATGGTGAACAGGTTCTATGGAGATGGAGATCACCATATGAAAACGGGCTA
-TACTGTGTCACAACTGTGTGAATGCTATTCTATTTATATTTTACTTTCTGCATGCTGTGA
-TGTTAGAAGTAGAATGATCCCTCACAAAGTTTAAGTTAGTATGCCCTCCCAACTAAAACT
-TGCACCGTCCCATATCTTGTACAATTAGTGGTGGGTCTATGAAATTAGGGTGCCACTAGT
-TTTCCTTGATTAGACGGGTTTGTGTCGGACACTTACACGCATAAGAGTTGGTTTGCTTAA
-CAAGGTTATCTTAACGGTTAAGGACCTTGGGGCATAAAGGTTGGGCGCCGAGACATAGAG
-ATGTCACCTAACAACAGGAGTCATATGTGATATGATTAGCAAAAGTTGCTTACCGATCTA
-CCTTGTTTGCTAGCGGTGATGCTAAAGCTCACTAGTAGACTTGTTAGTTGTGGATCCTGA
-ATCACTAAGTTTCAATAGAGGGATATTGATTTTAGTGGGAGTAGATTCTGTTAAAATAGT
-TTAATGTGATTTGCTCTATCATGGATACATTTGTCTTAGTGTATTTTGCATTACTTTGTT
-GTAGATTAAATGGCACCTAGCAGCACTACACCGTTTGCTTTGCGTTCGGTCCTTGAGAAG
-GACAAGTTGAATGGAACAAATTACTCGGATTGTTTCCGTAACCTGAGAATTGTTCTCAGG
-GCTGAGAAAAAGGAAGATGTTCTAGACAACCCACTACCAGAACAACCTGCTGATGATGCA
-CCCGCTGCTGCTAAGAATGCTTACAAGAAAGCATGTGATGCTAACCTCGAAGTAAGCTGC
-CTTATGCTTGCTTGCATGGAACCCGAGCTGCAGATGCAGTTCAAAACAAACCATGAGGCG
-CACGATATGATCGTGGCGCTTAGAGACATGTTCCAAACATAGGCTAGGGCTGAAAGGTTC
-AATGTGTCTAAGGCCTTTGTTGAGAGCAAGCTAGCAGAAGGCGCAGCAGTAGGACCACAC
-GTAATCAAGATGGTTGGTTACACTCAACGGTTGGAGAAGCTGGGCTTCCCACTGGGCCAA
-GAGTTGGCCACTGATTTCATTCTTTCGTCTCTTCCGCATAGCTATGGGAACTTCATCTCG
-AACTACCATATGCATGGGATGGAGAAGGGTTTGAATGAGCAGTGTGGCATGCTTAAAACA
-GCAGAGGCTGACATCAAGAAAAGCGCTAGTACCAACCATGTGATGGCTATACAGAACAAG
-CCTAGCTTTAAGAAGAAGGGCAATTCTTGGAAGAAGAAGGGCAAGGCTGGAACGTCCAAG
-CCAAACCCAGCGCCCAAGGTTAAAGCTAGACCTGGACCTGCTCCAGACAAAGAGTGCTTT
-TACTGTCATGAACTTGGTCACTGGAAGAGAAACTGCAAGCAGTACCTAGCTTCCTTGAAG
-AATGGAGGAAGTAAGAGTACTTCTACCTCAGGTACGCTTGTTGTTAATGTTATAGACAAC
-ATTTTTCTCGCTGATACAATTATTAATTCTTGGGTATTTGATACCGGATCGGTTGCTCAT
-ATTTGCAATTCGATGCAGGGAATGATAAGAAGTAGAAGCGTGGAAAGAGGAGAAGTTGAT
-TTCCGCGTGGGCAATAATGCAAGAGTTGCCGCATTGACCGTCGGGACGATGCAACTCCAC
-CTCCCGTCAGGATTTATTATGGAGTTGAATAATTGTTATTTCGTTCCTAGTTTAAGTCGA
-AACATTTTGTCTTCTTCATGCTTGATGAAGGATGGTTATTCATTTGCGAGTGAAAACAAT
-GGTTGTGTGATCTCTAAGAATGATATTTATGGCTTTTGCACCCATTGTGAATGGATTATT
-TGTTTTAAATCTTGATGGTTCACCTGTCTGTAACGTAAGTGCTAAAAGGCCTCAGCCTAA
-TGATTTGAGTCCTACCTACTTGTGGCCTTGTCGTTTGGGTCATATAAGTGAAAAGCGCAT
-GAAGAAGCTTCATTCTGATGGACTTCTAACTTCGTTTGATTTTGAATCATACGAGACATG
-TGAGGCTTGCTTGCTAGGCAAGATGACCAAGACGCCTTTCACAGGATTTCCTGAGAGAGC
-AGTAGACTTGTTGGAACTCGTACATAGTGATGTATGCGGACCAATGAGCACGACGGCTAG
-AGGAGGATTCCAATACTTCATAACTTTCACTGATGATTTTAGTAGATATGGCTATGTCTA
-CTTGATGAGGCACAAGTCTGAAACCTTTGAAAAGTTCAAGGAATTTCAGAATGAAGTTGA
-AAATCAATGTGGCAAGAAAATTAAGGCCTTACGATCTGATCGTGGAGGCGAGTACTTGAG
-CCACGAGTTTAGCAATCATCTAAAGAGTTGCAGAATTGTTCCACAACTTACGCCGCCTGG
-AACACCTCAGAGAAACGGTGTGTCCGAGCGACGTAATCGAACTTTGTTAGACATGGTTCG
-ATCAATGATGAGCCAGTCGGACCTACCGTTGTCATTTTGGGGATATGCTTTAGAAACAGC
-AGCTTTCACACTTAATAGGGTAGCATCTAAATCCGTAGTTAAGACACCATATGAGATATG
-GACTGGAAAGGTTCCTAGTTTGTCTTTTCTAAAGATTTGGGGATGTGAAGTGTTTGTCAA
-GCGACTTCAGTCGGACAAGATCACACCCAAGTCGGATAAGTGCATTTTTGTGGGATATCC
-AAAGGAAACTTTGGGATATTATTTCTACAACCGATCAGAGGCAAAGTGTTTGTCGCTCGG
-AACGGGGTTTTCCTAGAGAAAGAGTTTCTCAAAGGAGAAAAGAGTGGAAAGATAGTGCAT
-CTTGAAGAAGTTCAAGATGAGCCGATCGGGCAAGAATCAATGAGTGATGCTAACGTAGCA
-GAACAAGTTGAGATACCCATGGCAAGAGAAGCACCACCACAACTACGAAGGTCGGCAAGG
-CTCCGCGAAATGCGGGAAATATTATTGTTGGACAATGATGAGCCTGCGACATATGCAGAA
-GCAATGATGGACCCAGACTCCGAAAAATGGCAGAGTGCCATGCAATCCGAAACAGAGTCC
-ATGGGAGACAATTAAGTTTGGAACTTGGTTGACCCGCCATAGAATGCAAGTGGATCTATA
-AGAAGAAAAAGGACATGGATGGAAATGTTCACATCTATAAAGCACGACTTGTCGCAAAAG
-GTTTTCAACAAGTTCAAGGAGTTGACTACGATGAGACCTTCTCGCCCGTAGTGATGCTTA
-AGTCCATTCGGATTATTCTAGCTATAGTTGCATATTTCGATTATGAGATATGGCAGATGG
-ATGTCAAGATAGCTTTCCTGAATGGAAACCTAGCTGAGGACGTGTATATGATACAGCCCG
-AGGGTTTTGTCGATCCGAAAAATGCTGGAAAGGTATGCAAGTTTCAGAGATCCATTTATG
-GATTGAAGCAAGCATCTAGGAGTTGGAACATTCGTTTTGATGAAGTGGTCAAAGGGTTTG
-ACTTCACCAAGAACGAAGAAGAGTCTTGTGTTTACAAGAAGGTTAGTGGGAGCTCTGTAG
-TATTTCTAATCTTATATGTGGATGACATATTACTGATTGGAAATAACATTCCTATGCTTG
-AGTCCGTAAAGACTTCACTGAAAAATAGTTTTTCGATGAAGGACTTAGGGGAAGCGGCAT
-ATATTCTGGGCATTAAGATCTATAGAGATAGATCGAGAAGGCTTATAGGTTTAAGCCAAG
-ATACTTACATTGACAAAGTGTTGAAGCGGTTCAGCATGGAAGAGGCAAAGAAAGGGTTCT
-TGCCTATGTCACATGGCATACATCTCAGCAAGACTCAGTGTTCTTCGACTGCTGATGAGC
-GGGATCGCATGAATAGAGTGCCATATGCCTCGGCTATTGGATCTATCATGTATGCAATGA
-TAAGTACTCGCCCAGATGTTTCATATGCGCTAAGTATGACAAGCAGACACCAATCTGATC
-CAGGGAGAGTCACTAGACAGCGGTGAAAAACATTCTTAAGTACTTGAGAAGGACTAAAGA
-TATGTTCCTCATCTATGGAGGTGAGGAGGAGCTCGTTGTAACAGGTTACACCGATGCTAG
-TTTCCAAACCGACAGAGATGATTTAAAGTCACAATCAGGATTTGTGTTCATGCTAAATGG
-TGGTGCTGTTAGTTGGAAGAGTTCCAAGCAGGAGACGGTGGCCAATTCTACGACAGAAGT
-CGAGTACATCGCGGCTTTGGAAGCCGCGAAGGAGGGTGTTTGGATAAGGAATTTTCTCAT
-TGGGCTTGGTGTGTTCCCGAATGTGTCCAGCCCATTGAATCTCTACTGTGATAACAATGG
-GGCAATTGCGCAAGCAAAGGAGCCAAGGAACCACCAGAAGAACAAACACGTAATGCGGCG
-ATTTCATCTCATTCGAGACTTCGTTAACCGGGGTGAGATCAAGATATGCAAAATACACAC
-GGATCTGAACATTTCCGATCCGTTGACAAAATCACTCCCGCAGGCTAAGCATGATGCGCA
-TGTAAGAGCTATGGGTATTAGGTACCTTCTAGATTGACTCTAGTGCAAGTGGGAGACTGT
-TGAAGGTAGGCCCTAGAGGCAATCATAGAGATGATGATATTCCATTTGTATCCATGATTT
-GTATATTGTGTTCGTTGAATATCCATTGAAGGCTACTTGAATTGATTTGCAATTATGTGA
-ATTGTATGTGAAACTCTTTACTTGTATGGTTATTCTAAAGTTGTCCCTAGTCGGAGTTCA
-TGTGAGGACACACATGAATATTAGACTAGCACATGTATTAGTTGATGACTATATTTCACA
-AGTCATGGACATGGAGATGTTGAACTAATAATGTGGACACATGTGGAGACATGTGCTAGG
-ACTGACCCAACACGAGAAGTAGTTCTCTCTTTAAACAACATATACGCTTTGTCCTTAGAC
-CTGAGATTGTCGCATGTATTCTAGATGTGGATTGACCTAATTAGGGGCTATCAAACGCTA
-CGCCGTAACAGGGTAGTTATAAAGGTAGTTTTCGGGTTTGTCAAGAAGCATGCTATGAGA
-CATGGTCAATCATGATGGGATTTGCCCCTCTCTGATTGAGAGTGATATCTCTGGGCCCCT
-CAAGTGATCGGATCCGAAAATGCATGGCCATGCTACGTACGGTTAAGAGTTAACCTACAA
-AGGGATTCCGAATCACAGGATCGAGAAAGAGCGGTCGGCTTGAAGCTAGACCAAATATCG
-TGAGGCAAAGGGAATAGCATGTATATTATGTTGTGATGGTTCGTCTGATACGATCTTCGT
-GTGCGTATGGGAGTTGGCACGTCTTGCTAGAGGCCGCTACCGACTATTGGGCTGAGTAGG
-AGTACTCGGGCCATGTCTATACGTATCCGAACCCATAGGGTCACACACTTAAGGGGCCGG
-AAGCCCAATTCGGATCTGATCCGAGTTGGATTAGGTTTAGAAGTACTAATGAGCCTCGGA
-CCCAGAGGCCCGTCAGGAACCTCTATAAATAGAGGGGTGGGGGCGCCCTAGGGTTTACAC
-CTTTTGGCGAAACACATCTGCCGCGCCTCCCACGCCCTCGCCTGTTGCAACTCGCGGATC
-TAGCAATTCGGCTTGCGACGCTTCCTCCCTGCACGTGTGGACACCTTGGAGGTGTTGCGC
-CTGCAGCACTTGGACGAGCCGCCGACGAGCCGACGACGAGCCGCAGCACGAGGGCGATCT
-TGCTGCACGTGGACGAGCTGCTGAGGAGCTGCTGGACGTTGACGTGATCGACTACGTACG
-ACTACGTTGATCGTCTTCGCTGCATCGACGCAAATCTACATCTTCCGCACTAGTAGTGCG
-TCGAGTGGTAATCCCGTGATCCTTATACGGCAGTTCTTCCTGGTTTGACGCGATAGAAAT
-TTTGATTTGCGCTAGTGTAGCCTACCTCGTATCCCAACATTAAC
->Spurpurea289_256_rc
-CACCATGTCACGGGATATGATTGTGTATTCATTAGGAAATTAATTAGAGATGTAATTAGT
-AGTTAGTAGTATTGTACTAGGACAATTATTCCTCTTCTATACGTAGCCTGAATTAATAAC
-TACTCATGTAAATCAGTTTACAGTCTATTTAATGAACAAGACACTCAAGAAGAGTGATCA
-TTCAGTGCATATACAAATCAATTTTGACATGGTATCAGAGCTACTGACTTGTGAATCATC
-GTGATCATAACGATTTTTTTTCTTGATCTGTGTCAAGTCTTCTGTGTGGGTTTTTTGGTT
-GTGGTTGTCGGCATACTATTCTGTGATTTTTTGGGGGAGATCGGTGACTGTTCTGGTGTG
-ATTTTTTTTGGAGGTCGTGTGGATGTGTTGTCTTTTCTGGCGTAGGTTTTTGTTGTGGCT
-GGGTTATAGTGTGTGTATCGGTGCTCTCTGTGGTGGCTGGAAGTTCTGTGGTGGGTCTGT
-TGCCGGAATCAGTTCTATGGTCTCTGGTTCTATGACGAGACCTTCGGTTCTGAGGGAGAT
-TGTCGAACGAAGGCGACGATCTCTTGTTTTATTCTTATTGACAAGTCAGCATCCCACTTG
-TCTCTGTTGTTGACGCGTCGGGCTGCTCTTCTGACACGTGGCGTGGCTACTGGATTACGT
-GGTGTGGGCTAACTGTTGGGCTGCGTGGAGTGGGCTTTTCTTTTCTAGGTTTGGGCTTCC
-ATTTTTGGGCTTTATTTTACCTAATTGGGTGCTGGGCCGGGACTGTTTCTAAAAGGAATT
-TCTGGGCCTTATTAGCTGGACCTGCTTAATTAATTGGGTCAATATTTGGACTACTTGGCT
-AATTTTCTACGGATTTGCATTATGTCTCTGGAGAATAATATTATTCGTTTTACTGGAAAG
-AATTTTTCTACATGGGAGTTTCAATTCAAAATGTTCTTAAAAGGGAAAGAATTATCAGAG
-CATATTGATAGCTCTACCAAAATCCCCACTGATAAAGAGGAATTAGCCAAATGGGAGGTT
-CAAGATGCTAAGGTGATCTTATGGCTATTGGGGACGATTGAACCTCATCTTATAGCAAAT
-CTTCGGTGTTTCACTATGGCTCAAGCTATGTGGGCCTATTACGCCGCATTTATCATCAAG
-ATCACAGCGCTCAAAAATCCAGTTGGAGTAGGAGATTAACAGTTATAGTCAAGGTAACCT
-TACCATTGAACAATTTTATTCTAGTTTTATTAATATATGGAGCGAGTATTCTGCTATTGT
-TCATGCTAAGGTTCCTACCGCGGCTCTCGCGGCTCTTCAAGCGGTTCATGCTGAGAGTCA
-ACGAGATCAATTTTTTATGAAGCTTCATCTTGAATTTGAACATGTTCGAGCCGATCTATT
-GAATCGTGATCCGGTTCCTTCCTTGGATATCTGTGTGGGGGATTTATTGCGTGAGGAGTA
-ACAATTATCCACTCAGATGGGTATGGCCTCTCAGAAGGTTTTTTCTGAGCATGTTACTGT
-AGCCTACGCAGCACAAGGAAGAGGACCGAACAGGTTGCAATGTTTTAACTGCAAAGAGCA
-TGGTCACATTGCTCGTAACTGTTCGAAGAAAGTTTGCAACTACTGTATGAAACCAAGCCA
-TTTCATCAAAGACTGTCGGGCACGACCTCAGAATCACCACTCTCAAGCTTTTCAAGCTAT
-TGTCTACGCCTCGTCTTCTACGCCCCCCACTGTAAGCACTGATTCATCTGTTCTCACACA
-TGCCATGATTCAATAGATGATTGTCTCAGCTTTTACGGCTTTGGGCCTACAAGGTATAAT
-TCCTACTTCCACTCCTTTGCTTGTTGATTCGGGTGCTTCTAATCATATGATTGATAATAC
-AACAGATCTCCATGATGTTCATGAGTATGACGGCACACAATCCATTCAGATTGTCAATGG
-TAGTACACATCCTATTACTGCTGTTGGTAATTTGGATTCTTCAATTAAAGATGTTTTTGT
-CTCTCCTAAATTATCTACCAGCCTAATTTCTGTTGGACAATTGGTGGATGATAACCTTGA
-TGTTCATTTTTCTCATGGTGGTTGTGTTGTGCAGGATCAGGTGTCAGGAATGGTGATCGC
-GAGGGGCCCTAAAGTAGGACGTCTTTTTCCTTTATATTTTTCTATTCCAAATGTTGTTTC
-CTTTGCTTGTATAGCTACGACCAATAATAATGACGTATGGCATAAGAAATTAGGTCATCC
-TAATTCTGTTGTCTTAACTCATCTTTTAAAACATGGTTTTTTGGGCAATAATAATTCTCT
-CTTCTTTTGATTATGCTATTTGTCGTCTTGGTAAAAGTAAAACTTTACCTTTTCCTGTGC
-ATGGTAATCGTGCTTCCACTTTGTTTGAAATTGTGCATTATGATGTTTGGGGTGCTAGTC
-CTGTTATTTCTCATGGGCAATATCGTTATTTTGTGATATTTATTAATGATTATAGTCGAT
-TTACTTGGATCTATTTTCTTCACTCAAAAGCTGGCATGTTCTCTGTTTTTCAAAAATTTG
-TCGTGCTTGTCGAGACACAATTCAGTACTTGTATCAAAATCTTATGCTCCGACTCCAGGG
-GGGTAATACATGTCAAATTCTTTTCAGAATTATCTTCAACAAAAAGGGATAATTTCTCAA
-CGCTCTTGCCCTTACACTCCTAAACAAAATGGAGTCGCTGAGCGTAAGAATCGTTATCTC
-TTAGATGTTGTTCGTGCTTTACTAATTGATTCATCTGTACCTACCAAATTCTGGGTAGAA
-GCATTATCTACAGCTGTTTATTTAATCAATCGTTTGCCTACAATCACTCTAAATTATGAT
-TATCCATATCTTTGTTTATTTGGTATACCTCCTGAGTATAAATCACTTCATACTTTTGGG
-CGTGTCTTTTTTGTTCATCTACCATCCTCTAAACGTCACAAGCTTGCCGCTTAATCTGTC
-ACATGTGCTTTTATGGGATATAGCCTGACTCAGAAAGGATTTAGTTATGATGCTCATGTC
-AATAAATTTTGAATGTCCAGGAATGTAGTTTTCTTTGAAAATCAATATTTCTTTCAATCT
-CATGTTATTTCTGATTCCCCTACTGTCACGCTTCTCCCATTTAATGATGTCCCTCCTTCC
-ATTAAGCGGTTTAAACTAGGTATTGTGTATCAAAGACGTTCTCCTTTAGCACCTCTTCCA
-GACACCACTTTGACATCTGATTCTACATTACTAGCACCTCGACGATCCACTCGGATTCCC
-CATCCACCAGATAGGTGTGACTTTTCTCATACGTCGCTTACTGCTACTCTCGATACTATT
-TCTGTTCCTCACTCTTATACTCATGTAGCCACCCAAGCTTGCTGGCAGCAAGCCATGCAA
-GAGGAAATTCAAGCTCTTCAAGACAATCAAACTTGGGATCTTATGACTTGTCCACTGGAG
-TCAAACTTATTGGTTGTAAATGGGTATACTCAGTCAAGTTTAGATCTGATGGCTCCCTGG
-ACCAGTATAAGGCCCGTCTTGTGGCTCTTGGGAACCGACAGGAGTATGGTATTGATTATG
-AAGAGACATTTGCACTAGTAGCTAAAATGACTATTGTACGGACTATATTGGCACTTGCTA
-CGTCACAGGAGTGGTCTCTTAGACAAATGGATGTGAAAAATACATTCCTACATGGAGATT
-TTAAGGAAGAAATTTATATGTCTCCACCTTCGAGCATGTTTAAAACACCCTCCTCCGAGG
-TTTGTCAGCTACGCAGATCTTTGTATGGTTTAAAACAGGCACCGCGGGTATGGTTTGATA
-AATTTCGCTCTACTTTGCTTGACTTTCACTTTATTCAAAGTCAGTTTGATTCCTCTCTGT
-TTCTCCACAAGACATCTGCAGGAATTGTATTGCTTTTAGTCTATGTTGATGATATTGTGA
-TTACTAGATCAAATACTGAGTTACTTAAACACTCGCAAAAGCATCTCCAAGACTCTTTTC
-ACATGAAAGATCTTGGCACTTTGTAGTATTTTCTTGGCCTTGAGGTTTAGATTACTCCGA
-CCGTTACATTGTTACATCAGCACAAGTACATGGAGGAAGTCATTTCACTAGCTAGTTTCC
-AAATGGGCAATTCGGTTCTTACTCCATTGGAGGTCAATGTTAAGCTTAGCCAGAGGAGGG
-CGAGCTTCTGTCAGATCCATCCTTGTATCGGCAACTAGTTGGAAGTTTGAATTACTTGAT
-GATTACTCGTCTTGATATTTCCTTTGCGGTGCAACAAATTAGTCAATTTATGCAGGCTCC
-TCGACATCTTCACTTTGCTGCGGTTCACCAAATTATCCGATATTTGAAGGGTACTTCTTC
-AAGAGGGTTGTTCTTTCCTAAGGTATCTTCCTTACAATTAAAAGGATATAGTGACGCTGA
-TTGGGCTGGTTGTGCAGATACTTGTCGCTATGTTACTGGATGGTGTATGTTTTTCTAGTA
-ATACACTTATTTCTTGGAAGAGTAAGAAGCAAGATAGAGTTTCCAAATCCTCCACAGAAT
-CTGAATATCGGGCTATGTCTTCAGCCTACTCGGAAATTACATGGCTTCGTGGGTTATTGG
-GCGAACTTGGTTTTCCTCAGCTTCAATCCACTCCTCTTCATGCTGATAATACCAATGCAA
-TTCAGATTGCGGCTAATCCAGTGTTTCATGAGCGTACAAAGCACAATGAAGTTGATTGTC
-ATTCCATTCGTGAATCTTTTCACTGACATGAAATTACACTACCTCACATTTCCACCGAAC
-ATCAAACTGCGGACATTTTCACTAAAGCTCTCTCTCGGCATCAACATCAATTCTTAGTTG
-ACAAATTGATGCTTCTTGATCGACCAACATCAATTTGAGGGGTGATGTCACGGGATGTGA
-TTGTGTATTCATTAGGAAATTAATTAGAGATGTAATTAGTAGTTAGTAATATTGTACTAG
-GACACTTATTCCTCTTCCATACTTAGCCAGAATTAATAGTTACTCATGTAAATCAGTTTA
-TAGTCTATTTAATGAAAAAGACACTCAAGAAGAGTGATCATTCAGTGCATATACAAATCA
-ATTTTGACACACCA
->Stuberosum206_200_rc
-GTTATTGTTGAATTCCCATTTTCTGTTATTACTGTACACAGTTGGTTATTACTGTTTAGA
-AGTAGTTAGTATGGGATTAATCTAGTTAGTGGTTAAAAGGGTAATTAGCTGTAATTGGAT
-AGGGAATCAAAGTTAGTTAGAGAATGTATTTCTGGTGGATTGAATCTGAAATGTAAGTAT
-ATAAATAAGGCACAATTGTAACACTGATCAGATGATGAAATAAAACGATTCTTCTTCCTC
-TTTTCTAATTCAGTTTTCTTCCAGAACCTTCAATGGTGAAATGAGGTCTTTAGCTTAGAA
-TTTTCACATGGTATCAGAGCAGGTTATGCTTGCTATCTAGTAGATCAGAGTATTGTTTCA
-ATACAACAAAGTTGCGAAGAAGACGACAATGGCGAACGTGAGAATAGATTAGAATGATCC
-TCTCTATATAGGTCCATCAGATGCTTCAGGTGCAGTTTTGATTCCTATCAAACTCACTGG
-TCCTGAGAACTATGGAATTTGGAGTAGGTCAATGCAAATTGCCCTGTTAGGGAAGAGGAA
-ATATGGATTTGTTATGGGAGCTTGCAGTAGATCTTTGTATCGAGAAGAATTGCATGAACA
-ATGGGAAACCTGTAATGCAATAGTTCTATCGTGGTTGATGAGTGCAGTTAGTGAAGATCT
-TCTGAGTGGAATAGTTTATGCTACCAGTGCATATACGGGAAGACTTGAAGGAGAGGTTTG
-ATAAGGTAAATCGAATGAGGATTTATCAACTGCATAGGGAGATCAACACATTATCACAAG
-GTACAGACTCTGTCTCGACTTATTAGACTAAATTGAAGAATCTCTGGGGTGAATTTGATG
-CATTTGTGCCTTCACCTAGTTGTGCTTGTCCAAAATCAAAGGAATATGCAAATCATCTCT
-ATCAGCTTAGATTGATTCAGTTTCTCAGTGGTTTGAATGAGTCTTATGAGCAGGCTAGGA
-GACAGATTTTGTTGAAAGGTGTTACTCCATCCATTAATCAATCTTATGCTATGATTATAG
-AGGATGAGATTCAGCAACAAAATACTTGTGTGGTAACTGCTAATGCAATACCAGAAACAA
-TTGCTATGAATGTTAACAGAGGACAAAGCTATAATCAGGGAAATCAGAATTACAAAGGAT
-GAAGATGTGAATATTGTCACTACACTGGACATACTAAGGAGAACTGTTACAAGCTAATTG
-GCTATCCAGCTGACTAGAAAAACAGGAAGAAATCTGGTTTTAACAACTCAAAGGCAAGTC
-CATCCAATTCTCATTCTGGAGGACATGGAAATCATGGATATGGCAACTTTGGAGATCAAA
-CAGGAAATCGCCTAGCAAACAACATTTCAAAAGATCATCCAGATCAAACTCAAGTGGCAT
-CTACCAGTCATGAGGTGAATAATGCCTTTGTCACTAAAGGACATACATTCACTGATGGAG
-AATACAAGCAAATAATGAATATGCTGGGCAAAGACAACAAGGACATGAAGCAGGCCAAGT
-TGACAGGTATGGCTAATTGTTTTTCAACAAATGCTAGCTCACATAGATGGATAATAGATT
-CTGGAGCTTCTCATCATATAACAGCAGATAAACACTTGTTAGCAAACAGTAGATGCACAA
-CTGATCCTCATCATGACAAGGTGAATTTGCCTACTGGTGATAAGGCCACTATATCACACA
-TAGGAGAGATATTTCTGTTTGACAATGAAACTGTCAAAGATGTGCTATGTGTTCCTGATT
-TTAAGTTTAACTTACTATCAGTGTCACAGATAACCAGGGAACTTTCATGCTTTGTTTCCT
-TTTACCCTGACTTTTGTGTCTTCTAGGACCTTTACAGTGGCAGGGTGAAGGGGATTGGTA
-GGGAGGAAGGAAGTTTATACATACTCAGAGATGAACCTGACATACAGAACACTTGTGGAA
-CTCTAAGTAATCAGAAAATAGTTGCAGGAGTATCACTGCAGGACTGTGATCTGTGGCATA
-GAAGACTTGGCCACCCTTCTTCTCATATTTTGAAATGCTTAGATTTACTGCATAGTAATA
-AGGATGTTGAACTACTGAATAGTTGTTTAGTCTGCCCTCTAGCTAAGCAGACTAGATTAT
-CATTTCCTATTAGTAATTCCAAAACATCTGTCATTTGAACTTGTACACATGGATCTATGG
-GGACCATATAAGATTCCTACATTTGATAAGAAACATTACTTCTTGACAATTGTTGATGAT
-TATAGCAGATATACATGGATTCATTTACTGCAGCTTAAATCTGAAACTATTGTAGCCATA
-AAGAATTTCTTATTAATGATTAAGAACCAATTTGGTCACACCATAAAGACAGTAAGATCA
-GACAATGGGACTGAGTTCTTCAACTCTCAGTGCAAGGAGTTATTCCTGAATTTGGGTATC
-TCAGATCAGAGTAATTGTCCTCACATACCACAGCAAAATGGTGTGGTAGAAAGGAAACAC
-AGGCATATTTTGAATGTAGCTAGGGCAATCAGATTTCAGGCCTGCATGCCCCTCAGATAT
-TGGGGTCTTTGTGTCAAAGCAACAGTATATCTCATCAACAGATTACCAACACCAACACTT
-AATGGTGGCAAGAGTCCTTATGAGATGATGTTCTCAAAATCCCCTAACCTTGGTCATTTA
-AGAGTCATAGGATGTCTTGGCTATGCATCAGTTATTCCAAGGAATGACAAGTTATCAGAA
-AGGGTAAAGTCTGTTGTTCTGATGGGGTATTCAGAAACTCAAAAAGGGATATTTGTTATT
-GGACCTACACACAAACAAGCTTCTGGTCAGTAGAGATGTTGTTTTTCAAGAACAGATATT
-TCCATTTGCTTCTCCACAACTTCCTAAAGAACCTGTTACAAGTGTGTCACCTTAATGTTT
-GAAGATCCTGCCTATCTGGAAGTGGTAGTACCAGAGGATTGCCCAAGGATTGCCCACCTG
-TTGTTCCTGTGGTTGCAGAGATTGGTGATGAGCCTGCAGAGATATTACCCAACATTGACA
-ACTCAGTTGACACAGCTGAGTCAATAGATGCCCAACCACCTGAAACTTCTATTAGGAGGT
-CTACCAGGACAACTAGACCACCTATATGGATGACAGATTACTCAGCTCCTACAAAGGGAC
-ATAGTAGCAGGTATCCCATTGCTAATCATCTCAGTTATACTCATGTGTCATCAAAGTATC
-ACAGCTATCTTGCCAAGTTTTCAACCTTAACTGAGCCTCAGACCTTTAAACAAGCTAGTA
-CTGATGATAGATGGATTGATGCTATGAAACTTGAAATCAAGGCACTTGAAGACAACAAAA
-CCTGGATGGTAGTTGATTTGCGTAAAGACAAACATGCAGTTGGTTCTAAGTGGATCTAAT
-GGTGAGGTGGAAAGGTTCAAGGCCAGACTTGTAGCCAAGGGCTATAGTCAACATGAGGGA
-ATACACTACCATGACACTTTTTCTCCAGTTGCAAAAATGGTTACTGTTAGATGTGTCATT
-GCTTTAGCTGTTTCAAAAGGCTGGTCTCTTTATCAAATGGATGTATACAATGCATTTTTA
-CAAGGTGACGTGGATGAGGAGGTTTATATAGAGATGCCTGAAGGTTTTAGAACTCAAGGG
-ACCACTAAAGTTTGCAAGTTGATCAAGTCCTTGTATGGCCTTAAGCAGGCCTCTAGACAG
-TGGAACATCAAGCTCACCAACACTTTATTATCAGCAGGCTTCATTCAAAGTTCTCATGAC
-TACTCCTTGTTCACCTTGAAGAAGCCAGAGGGGATGGTTATCATTTTGATATATGTTGAT
-GACTTACTCATTACTGGGGACAATGAGGCACTGATCAAAGAAGTAAATGAGACATTGCAT
-AAACAATTCAAACTTAAAGATTTGGGAGAGCTTAAGTATTTCTTGGGAATTGAGGTGTTA
-AGATCCAAGAATGGCATCATTCTGAATCAAAGGAAGTACATGTTAGAGCTGATTTCTAAT
-ACTGGTTTAAGTGGTGCAAAAACAACAGCTACTCCATTAGGATCCAATTTGAGATTAACC
-TCAGTGGAATTTGATAAGGCTACTGGATTACATGGAGATGATGTATTAACAGATTGCTCA
-GCTTATCAAAGGCTGGTAGGCAAGTTAATGTATGCCACAATTACTAGACCTGACATCAGT
-TATGCTGTTCAGACACTTAGTCAATTTATGCAACATCCGAAAAGGTCCCATTGGGAAGCA
-GCTGCCAGGGTGGTGAGGTATCTGAAAGGAACAGTTGGCCAAGGTATTTGGTTGAAGGCT
-CAACCTACCACAACATTGACATGTTGGTGTGATTCAGATTGGGCTGCTTGCCCTAAAACT
-AGAAGATCAGTTACAGGGTATATTGTAAAGTTTGGAGAGTCTATAGTGTCATGGAAATCA
-AAGAAGCAACAGACAATATCTAGAAGCTCAGCTGAAGCTGAGTATAGAAGCATGACTTCA
-GCTGTAGCAGAAGTAACTTGGTTGATAGGGCTGTTCAAAGAGCTTAATGTGTCTATTCAG
-ATGCCAATCACAGTATTGAGTGATAGCAAGTCTGCCATTCAGCTAGCAGCAAACCCTGTG
-TTTCATGAAAGGACCAAACACATTGAAATAGATTGCCACTTCATTCGAGACAAAGTCAAG
-GCTGGTGTAATCCAAACAGTGTATTACTTTTGTTAACAAAAGGGTTGAATCATACTCAAC
-ACTTGCATTTGTTAGGCAAGCTAGGTGTGCTTAACATTCTGCACCCTTCAGCTTGAGGGG
-GAGTGTTGAATTCCCATTTTCTGTTATTACTGTACACAGTTGGCTATAACTGTTTAGAAG
-TAGTTAGTATGGGATTAATCAGTTAGTGGGTTAAAAGGGTAATTAGCTGTAATTGGATAG
-GGAATCAAAGTTAGTTAGAGAATGTATTTCTAGTGGATTGAATCTAAAATATAAGTATAA
-ATAAGGCACAATTGTAACACTGAGCAGATGATGAAATAAAACGATTCTTCTTCCTCTTTT
-TTAATTCAGTTTTCTTCCAGAACCTTCAATGGTGAAATGAGGTCTTTAGCTTAGAATTTT
-CACAGTTAT
->Vvinifera145_640
-ATAATTGTTATAATTGTAGTAATGAATGCCACCACATTAATGTTAATTAAGTATTATTTA
-TGATTTCCATTAATACTCATTAATGGAAACCACTAATGTTATTTATGAGTTTCATTAATA
-TTCATTAATGGGGATATTAATGGAAGCCATTTGGAAGGCCTATGAAAGGGTTTCCCGTCT
-CCTGTAATATACATCCCGAGAAAAAGAAAGAAAAGTTCTTCCTCTCATTCTCTCTCTCTT
-TCTTTTATTTTCTCAACTCTCTTCTCTGATTTATTCTTCCCTATTATATATCAAAGTAAG
-ATATATTTCATTTCTACTACTTTGATTTGCATTGTATTTGTCCTTGTTTTACAACACGTT
-ATTAGCATGAATTGCTCTGAAGGTAATTCTCATATCTTAAACTTGAAGTTATTTATATAG
-AATAAAATTTTACATATATTATTGTTGATTTGTTTTGTTACATATTCTTAAAAGTTATAA
-ACAAATTATTTGATTTTGTTTATAATCAAAGTTATACCAATACTATCAATTTATTATAAT
-TGATTCTAATAATATTGTTTTGTCATATATTTGAAATTATTTGACAATGTCGAATCTCAC
-AAAACTCAAATTTGTGGCACTGGACATTTTGAGAAAGAACTCTCTATCTTGGATCCTTAA
-TGTTGAAATACATCTTGATGCAATAATCTTGGAGCTATGATCAAAGAAAGGAATCAAGCA
-TCCCTGCAAGATCGCACAAAAACACTGATTTTCCTTCGTCATCATCTCCATGAAGGTTTT
-TTTTTTTTTTTTAAAAAAAAAAAAAAGAGCTTTTGATGAAAAACCACTAGCTCATCCAAC
-TAGATTTGAATCATTACCTGAAGTGAATGCAATATAGTCCCAAACTCGTGGACGTGGATG
-AGAACGTGGTTGTGGTCATGGAAGAAATCCTCGATACCATGGTTCTTATAATAATAATTC
-TCAAAAAATGAAAGCCTCATTGCACCACCAAAAGTGGAACAATACGAAATGGAACAATAC
-TGAAGCAAAACAAGAAAATGGAAAGCGTTTACAAGATAAACCTCCTAAGAACCATGAGAA
-TAATTGTTATAGATGTAGTATGAAGGGGCATTGGTCACGTACTTGTCGTGCGCCCAAACA
-TTTAGTCGACCTTTACCAAACATCAATAAAAACAAAAGGAAATGAGATAGAGATGAACTT
-TACCAATAGTGATGGATTGGACCTAACCTACTATGACATTGATTTATTTGGAGGTCCCAA
-TGAAAAAACAGACCATTTGCTAAATGATAAAAAATTAACATTGATTTATGTTACTTTATA
-TATGAAATGATATATTATTATGTTTTATATTTACATTTGATTTTCTTTTGTTATTTACAT
-TATGCCTTGTTTTTTAGTTATATCTAAAATCCATGTGTTATTTGGTCTCAAGATGAATGA
-GGATGATGTATGTCTCGCAGACTGTGCAACCACGCACACGATTCTTCAAGATAAAAGATA
-TTTCCTTGAATTGACATTAATAAAAGCTAATGTAAGTAACATATATGGTACTACAAACTT
-AGTTGAAGGCTCTGGAAGAGCAAACATAACGTTGTCAAATGGAACTAGATTCCATATAAA
-TGACGCTTTATATTCTAGCAAATCCAGAAGAAATTTGCTCAGTTTTAAAGATATCCGTAG
-AAATGGATATCATATTGAAACTATGAATGAAGATAATGTAGAATATCTTTACATTACTTC
-CATTATATCTGGCTAGAAGCTTATAATGGAAAAACTCTCGGCTTTCTCCTCTGGGTTGTA
-TCATACAACTATAAAGCCTATTGAATCATATGTTGTCGTGAACCAGAAGTTCAATGACCC
-AAAAGTTTTTGTCATTTGGCATGACAGACTAGGTCACCCAGGGTCTTCAATGATGCGTCG
-AATAATCGAACACTCACATGGGCATCCACTAAAGAACCAGAAGATTCTTTCGCCCAATGA
-ATACTCATGTGCTGCCTGCTTACAAGGTAAATTGATAATCAGACCATCTTTTACTAAAGT
-CATATCTGAGTCACCAATCTTTTTAGAAAGAATACATGGGGACATATGTGGGCCTATCCA
-TCCACCATGTGGACCATTCCGTTATTTTATGATCTTAATAGATGCTTCTACTAGGTGGTC
-ACATGTTTGTCTCCTTTCTACACGTAACGTTGCCTTTGCTCGACTCCTTGCACAAATAAT
-CAGATTACGAGCACAATTTCCAGATTATCCAATTAAGACAATACGTCTTGATAATGTTGG
-CGAATTTACTTCTCAAACATTCATTGACTATTGCATGTTAGTATAAATAAATATTGAGCA
-TCCTGTTGCTCATACTCATACCCAAAATGGTTTAGCAGAATCCTTCATCAAACGTCTCCA
-ATTAATAGCTCGACCATTACTAATGAAAACCAAATTACCTACTTCCGCCTGGGGACATGC
-TATTATGCATACTGCAGTTTTAGTCCGTATTCGACCTACAACTTACCATGAATACTCCCC
-TTCACAATTTGTGCTTGGAAAACAACCAAATATCTCTCACTTACAAATCTTTGGTTGTGC
-AGTATATGTACCAATTGCACCTACACAACGCACTAAAATGGGTCCCCAACGAAGACTTGG
-GATTTATGTAGGTTTTGATTGTCCATCTATCATAAGATATCTTGAACCTTTAACAGGCAA
-TGTTTTTACAGCCCGCTTTGCGGATTGTCATTTTAATGAGAGTGTTTTCCAGTCATTAGG
-GGGAGAAAAATCGATTCCTGAAGAACGACGAGAAATTAGTTGGAAGGCATCTACTATAAC
-CCATCTTGATCCTCATACAAATCAATGTGAACTAGAAGTTCAAAGGATCATTCATTTGCA
-AAATCTTGCAAATCAATTACCAAATGCATTCATTGATACAAAGAAAGTGACAAAGTCACA
-TATCTCGGCTACAAATACTACAACACTAATTGATGTCCCTGTAGGACAGTTAACAAATGA
-ATCTAAGATACGCTTGAAGCGTGGTAGACCTGTCAACTCAAAGGATGTAACTCATCGGAA
-GAGGAAAACCCAAGAAAAACTTGGCACTTTAGAAGATGTCATCAAAATGACTGATCAGTT
-TAAAATTAATAAATCTATAGCCCTAGAAGAGGTACAAATAATGCAGAAAGCCCCTAAAGA
-GACATATATTGAACAAGAAGCCCCCGAAGAGGCACATGTTGAACAAGAAGCCCTTAAAGA
-GGCACATGTACCTGAAAATTGTGAGATCTCAGTAAGTTATGTACACATGGGAGAAAAATG
-GGATCGAAATAATATTGTTATTAACAATATTTTTGCTTTCCAAGTGGCCTCTGAAGTCAT
-AAGAAATTATGAAGATCCCGAACCACGAAATGTGGAAGAATGTCGACATAGAAATGATTG
-GCCAAAATGGAAAGAAGCTATACATGCAGAATTAAACTCATTAACAAAACGAGAAGTTTT
-TGGACCTGTAGTCCAAACACCTGAAGATGTAAAGCCTGTTGGGTGCAAATGGGTATTTGT
-ACGAAAGCGCAATGAGAATAATGAGATCATAAGATATAAAGCGCAATTAGTAGCACAAGG
-TTTCTCGTAGAGACCTGGTATTGACTACGAGGAAACATATTCTCCCGTCATGGACGCAAT
-CACATTTCGTTTCTTAATTAGTTTGGCAGTCTCAGAAAGACTGGATATACGTCTCATGGA
-TGTTATTACAACATATTTATACGGATCCATGGATAATGATATATATATATGAAAATCCCT
-GAATGATTTAAATTGCCTGAAGCAAATAATACAAAGCCTCGTAGCATGTACTCAATCAAG
-TTACAACGATCCTAGTATGGATTAAAGTAATCTGGACGCATGTGGTACAATCGCCTTAGC
-GAATACTTGCTAAAAGAAGGGTATGTGAATAACCCTATATGCCCATGCATCTTCATTAAA
-TCAGAAATGGGATTTGCAATTATTATAGTGTATGTTGATGACTTAAATCTTGTTGGAACT
-CTTGAAGAGCTCACAAGAACAACAAATTACTTGAAAAAGGAATTTGAGACGAAAGATCTT
-GGAAAAACAAAATCTTGTCTCGGCCTGCAGATCGAGCATTTTCCAAATGGAGTTTTAGTA
-CATCAATCAACATTCATTAAGAAAGTTTTGAAATGTTTTTATATGGATAAAGCGCATCAT
-TTAAGTTCTCCAATGGTTGTCCGATCACTTGATGTGAAAAATGACCTATTTCGTCCTTAC
-GAAAAGGATGAAGAGTTACTTGGTCCTGAAGTACCATATCTTAGTGTTATTGGTGCACTT
-ATGTATCTTGCCAATTGTACACGTCCAGACATTGCTTTTTCTGTCAATTTATTAGCAAGA
-TACAGTTCCGCTCTAACTCGAAGACATTGAAATGGTATCAAACATATATTGTGTTATCTT
-CGCGGAACTACTAATATGGGTTTATTTTACTTAAGGGAATCAAAGTAACAATTGCTTGGA
-TATGCAGATGCAGGATATTTTTCAGATCCACATAAAGGTAGGTCATAAATAAGATATGTG
-TTTAATTGCAATGGTACTGCTATTTCATGGAGATCTGTCAAACAAACAATGGTGGTAACA
-TCATCAAATCATTCAGAAATATTGGCAATTCATGAAGCAAGTCGTGAATGTATATGGCTA
-AGATCTATGATCCAGCATATTCGGGAATCATGTGGACTCTCCTCTATCAAAGGTGACCCG
-ACAATATTATTTGAAGATAATGTTGCATGCATTGCACAAATAGCAGAGGGTTATATTAAA
-GGAGATAGAACTAAACACATTTCACCAAAATTCTTTTATACACATGAACTCCAGAAGAGT
-GGTGAAATTGATGTGCAACAAATACGGTCAAGTGATAATCTAGCAGATTTATTCACAAAA
-TCATTGTCAACCTCAACATTCAAGAAGTTAATATACAGGATTGGAATGCGTCAATTCAAG
-GATATCGACATGAGGGGGAGTATACTTGTAAAAGGGTGTTAGTGTACTGTACTCTTTTTT
-CCTTCGTCCAGGTTTTGTCCTACTGGGTTTTACTGGCAAGGTTTTTAATGAGGCAATCCT
-AATATACCAAGAAAAGAATATTGTACTCTTTTTTCTTCGCTGGGTTTTTCCTATAGGGTT
-TTTTACTAGCAAGGTTTTAATGAGGCATATTCTTTCAATGTGGTGGACATCTAAGGGGGA
-ATGTTATAATTGTAGTAATGAATACCACCACATTAATGTTAATTAAGTATTATTTATGAT
-TTCCATTAATACTCATTAATGGAAACCATTAATGTTATTTATGAGTTTCATTAATATTCA
-TTAATGGGGATATTAATGGAAGCCATTTGGAAAACTTATAAAAGAGCTTCCCGTCTCCTG
-TAATATACATCCCGAGAAAAAGAAAGAAAAGTTTTTCCTCTCATTCTCTCTCTCTTTCTT
-TCATTTTATTAATTCTCTTCTCTGATTTATTCTTCCCTATTATATATCAAAGTAAGATAT
-ATTTCATTTCTACTACTTTGATTTGCATTGTATTTGTCCTTGTTTTACAACAATAAT
->Fexcel_5
-AATATTGTTGGGAGTTCCTTTTTAGGGTTTATCCACTTCAGTTCAAATAACCCCTATTTT
-TTGGGAGAAGCTTATTCAAAGCTGTTTGGGTTTGTTAGTTTTTGTCCTATTCTTTAGTTA
-CTCTACCACGAACTCAGGATTGTTGAGAAGTGGGTTGCAACGTTCTTTTCTTGTTTTGTA
-ATGGCTATATAAGCCAGTTTGTTTTCATTCAATAAATAAGAATCATTCAGCCATACTTGT
-GAGTGACTTGTGTGTGAGCTTCTAGTTTTTTCAACAATCTGGTATCAGAGCCAAAAAGGG
-GCCTGAGTGTGAGTGAAACACGAGTGATAGTGTCTTGTGAGAAGAAGTAAGCGTGAGCAT
-GGCCACAGAAGGAAGCAACTTCGGGTTTTCTTGTATTCCTAAGTTCGACGGAGACTATGA
-TCATTGGAGCATGATCATGGAGAATTTCTTGAGATCAAAGGAATACTGGACCCTCATTGA
-GACAGGCTACACAGAGCCGGCTGCTGGAGAGGTGCTGACTGCTACGCAGAGGAAGAGTTT
-GGAGGAGTTAAAGTTGAAGGACTTAAAGGTAAAAAATTACCTCTTCCATTCAATTGACAA
-ATCCATTTTGAAGACAATCACTCAGAAGGAGACGTCCAGGCAGTTGTGGGAGTCTATGAG
-AATCAAATACCAAGGGAATGCTAGGGTTCAAAGAGCTCAACTTCAAACTCTTCGCAGAGA
-TTTTGAAGTTCTGGAGATGAAGCTCGGGGAATCAATGACAAATTACTTTGCAAGAGTAAT
-GCTCGTGGCCAATGATATGAGGAATTGTGGAGAAGACATGCCAGATGTGAAGATAGTTGA
-GAAGATTCTTCGTACCCTCACTGAAAGGTTTAATTATATTGTTTGCTCAATAGAAGAATC
-AAAGGATATTGATCGTCTTTCTGTGGATGAACTACAAAGCTCTTTGCTTGTTCATGAGCA
-AAAGTTCCGAAAGGCTAGTGGAGATGAGCAAGCATTAAAAGTATCATATGAGGAGAGAAG
-TGGTGGACGTGGAAGAGGACGAGGAGCTGTGAGAGGCAGAGGCCGAGGCAGAGGCTTCAA
-CAAAGCAACCATTGAGTGTTACAAATGCCATCAGTTAGGGCATTTTCAGTACGAATGTCC
-CAAGTGGGAGAAGACAGCCAATTATGCTGAATTGGATGAAGAGGATGAATTGCTTCTCAT
-GGCTTATGTGGAAATAAACAACTCAAGTCAAGAAGGTGTATGGTTTCTTGACTCAGGCTG
-CAGTAATCACATGACAGGAAACAAGCAGTGGTTTACGGAGTTGGATGAGGGTTATAGACA
-TTCTGTGAAGCTTGGAAACAACATGAAGATGGCTGTGATGGGCAAAGGGAGTATAAAGTT
-GCAAGTTGGAGAAGTGAAACAGGTAGTGTCAGATGTCTATTACATTCCTGATTTGAAGAA
-TAATTTGCTTAGCATAGGCCAATTGCAAGAGAAAGGTCTAGCCATTCTGATTCGAGATGG
-AGCCTGCAAAGTTTATCACAATAGGAGGGGTCTTATCATGCAAACTCAGATGACAGTCAA
-TCGTATGTTTGTTGTGCTTGCACTTGTGGGAGTTCAACAATCAAACTGTCTCAATGCAAC
-CACTGAGGACGTCACAGAGCTATGGCACCAAAGGTTTGGTCACTTAAGCCACAAAGGTCT
-TCTAACCTTGCAGTGCAAGAAATTGGTAAAGGGGTTGCCACAATTTAAGTCAACAAGCAG
-AGTATGTACGATTTGCATGATTGGAAAACAACATCGTGATACTATACCAAAGAAAAGCAA
-GTGGAGAGCTTCTGAAAGACTTCAACTCATACATGCAGATATATGTGGACCTGTAACACC
-AACTTCAAATAGTGGAAAAAGGTACATGCTGAGTTTTATAGATGATTACAGTAGAAAAAT
-TTGGGTGTATTTTCTTGTCGAGAAGAGTGAGACGTTTGCATGGTTTAAAGTCTTTAAAAG
-TCTTGTTGAAAAGGAGCTAGGGTTGTATATTTGTTGTTTGAGAACAGATAGAGGAGGGGA
-GTTCACTTCAAAAGAGTTCAACGAGTTTTGTACAGTTCATGGAATCAAGAGGCAGCTTAC
-GACTGCCTACACACCCCAGCAAAATGGAGTGGCGGAGCGTAAAAATCGTACTATCATGAA
-CATGGTACGATGCTTGCTTACAGAAAAGAAAATACCAAAGGCCTTCTGGCCGGAGGCAGT
-GAAGTGGACAGCTCACATTCTCAACAGAAGTCCTACTATTGCTGTAAAGAACAAGACTCC
-TGAAGAGAGCTGGAGTGGTGTGAAGCCCAACGTTGATTATTTCAGGGTGTTTGGATGTAT
-AGGCCATGTGCACATACCTGATGCTAAGAGGACTAAGCTTGAAGATAAGAGTTTCAAGGC
-TGTGCTGCTTGGAGTAAGCGAAGAGTCTAAAGCCTATAGATTTTTTGATCCTATTACAAA
-GCGAGTTGTGACCAGCAAGGATGTTGTATTTGAAGAAAATGAGAGCTGGGATTGGGGAAG
-AAGTGAAGAAGAACTCAGGCTTGATATGCTGATGTGGGGTGAGAATGAAAAAGAAGGAAA
-CAATGAAGAACCAGAAAGTGATAGTGAGGTAGATGAAGACCAAAGTGAAGCTATGCCTAG
-CAGTAGTGAAGAGGCTGTAAACAATGAGAGTTCACCGGAAGTCAACACTCTAAACACATC
-GGAGGAATTGATTCTAGGGAAAAGAATTGGAAGAACTCCAACCTGGATGCAAGACTATGA
-AAGGGGGGAGGGTCTTTCTGAAGAAGAAGGTATGCAAAGTCTGGCCATGTTTATTTCTAA
-CATTGATCCTATGAACTATGAGGAAGCTGCAATGAGTGATAAGTGGAGGAGTGCAATGGA
-TTTGGAGATTGAATCTATTATTAAGAATAAGACGTGGGAGCTGGTGGATCTACCTGTGGG
-TGCCAAGAGAATTGGTGTGAAATGGGTGTACAAAACCAAACTTAATGAAAAAGGAGAATT
-TGATAAATGTAAGGCACGTTTGGTGGCAAAAGGCTATGCTCAAGAATACGGAATAGACTA
-CAATGAGGTGTTTGCTCCGGTGGCTCGTTGGGACACAATTAGAATGGGTTAGCTTTGGCA
-GCTCAAAAGGGGTGGACTGTGTTTCAACTTGATGTCAAGAGCGCCTTTTTGCATGGTGAA
-TTGCGTGAGGCAGTTTATGTGGATCAACCTCTTGGCTACATAAAGGAAGGTGAAGAAAAT
-AAAGTTTATAAGCTCAAGAAAGCACTGTATGGATTAAAGCAAGCACCGAGGGCGTGGTAT
-AGCAGAATTGAAGGATACTTCGTGAAGGCAGGCTTTGAAAAATGCAGTTATGAGCACACA
-CTGTTTATAAAGGTTGAAGGAGAGGGTAAAATTTTGATCGTAAGTCTTTATGTTGACGAT
-CTTATTTTTACTGGAAATGATGTGTGTATGATTGAGAATTTTAAGAGCTCTATGATGCAT
-GAGTTCGAAATGACTGACTTGGGGAAGATGAAGTATTTTTTGGGGGTTGAGATTAAACAG
-AGTGTAGAAGGGATACATTTGTGTCAAAGCAAGTATGCTAGAGAGGTTCTTGATAGATTT
-GGTATGGCTAACAGCAATCCTGTAAGGAATCCAATTGTTCCAGGTTCAAAGTTGTCAAAA
-GAAGATGGCGGAGCTGAGGTTGATGGAACCTTGTATAAGCAGCTTGTTGGCAGTCTCATG
-TATCTAAATGCTACCAGACCGGATCTTATGTATGTGGTTTGTCTCATTAGTAGGTTCATG
-GCATGTCCAAGAGAAGCGCACTGGTCTGCAGCTAAAAGGGTGTTGCGCTATCTCAAAGGG
-ACAATTGATTTGGGGGTGTTTTATCGAAGAGGAGTTTGTGATGAGATGTTGGCATATAGT
-GATAGTGATTATGCTGGCGATTCTGATGATAGTCGGAGCACATCCGGTTTTGCGTTTATG
-TTAAGTGGTGGAGCGGTATCATGGTCTTCAAGGAAGCAGTCTGTGGTTACGTTGTCTACT
-ACGGAGGCCGAGTATGTGGCTGCTGCCGCCTGCGCTTGCCAAAGTATCTGGATGCAACGA
-GTGTTTAACAAGCTCAGTCATACTCAATGTAAGTGTGTCACCATATTCTGTGATAATAGC
-TCCACTATTAAGTTATCTAAGAATCCTGTCTTTCATGGGAGAAGCAAACACATCAATGTG
-AGATTTCACTTTCTACGTGATCTTACCAAAGATGGTATTGTCAAGCTAGAGTTTTGTGGC
-AGCAGTGAGCAACTTGCAGACATATTAACTAAGCCTCTGAAGCTGGAAACATTTGAGAGG
-CTTCGAGGGATGCTTGGAGTCAAGGCCAAAGATGAAGTAAACTGAGCTGTTCCAGCAGCT
-TCAGTTTAAGGGAGGGAATGTTGGGAGTTCCTTTTTAGGGTTTATCCACTTCAGTTCAAA
-TAACCCCTATTTTTTGGGAGAAGCTTATTCAAAGCTGTTTGGGTTTGTTAGTTTTTGTCC
-TATTCTTTAGTTACTCTACCACGAACTCAGGATTGTTGAGAAGTGGGTTGCAACGTTCTT
-TTCTTGTTTTGTAATGGCTATATAAGCCAGTTTGTTTTCATTCAATAAATAAGAATCATT
-CAGCCATACTTGTGAGTGACTTGTGTGTGAGCTTCTAGTTTTTTCAACAAATAT
->Pabies_54
-AAAACTGTTGAAATAATGTAACTGCAAAGAGTATTCTTATTATTATTGATATATTATTCA
-TGGGATCAATCCCCATTGTGGATTGATCATGTCGGTTATTGTATTAGGACCAAATCCCCT
-TTTGCGGATTGGTCAACAGACAATTGTAATAGGCAGAATAAGAGGTCAGCCCCAGCAGTT
-ATTATTGAGACCTAGAAATATAATAAAGGTGGGTTTACCCACCCAGAGTGAGAAGTCGGC
-CCTGCCAATAAAGACACTTCACACGTGCCAGACTTGTATATAGAGAGAGGCCAGCGCCTC
-ACTTTAACACACAACTCACTTGCTCATTCTGAGAGGCAAGTTTCGATTTACCAGTTGCAG
-AGAGAGAGAAGAGTGGCGCATCTTTTGGAGAGGACTTTCTGTATTGGTTTGAGTTATCTC
-TTGACATTGTCTTGGCAATCTGTAATAAGGAAGTTTTACTGGGTTTTCTACCCCTAGAGG
-GTTTCCCAGGATAAATGTTGTGTCTCTTGTGAATATGTATTTCTCAGTGATCTTGTTCGT
-ATGTTGTTGTTATCTATTGAAATGCAAAGAACTATAATAATGGCATAAACATTAACATGG
-TATCAGAGCCAACCTGAAGGAAGCATATTTCGCAAGAGAAAAACGTCATTGTTGTCGTAC
-CTGCAAATTAGGGTTTTTCAAAAGTGAAGCTTTTCAACTCCAAAACCACCTAGAAAGTTG
-CGCCCTCCCCCGCGGATCATTTTGGCACCTTCAGCGCACCTTTTCAATGGTCGGATCTCC
-CGGAAAGTGAAACCTTAGTTTCACAAAGTACCAGAAAACCAGAGCACCACAAGTACCAGA
-GTACCAAAAGCACCAGTCCAGAAATCCGCAAATCAATTTTGGAAAGGCAAAAGTTGGATT
-TTCTCAGATCCAAGTACACCAGGCTACTCGCCTCAGCCAAGCGCACCTCCTGGTAAGGTC
-AAAAATTGATTTTAAGCATTTTCATTTTTGGTCATTTTTCATAGCCCCAAGTACAAGATG
-TCTGCAAGCACAAAGCTTGTTGAGAAACTAGAAGGCATAGACAACTTTCGTGCCTGGAAG
-TATAGGATCGGTCTGATCCTTGCAAAGAATGACCTAGCAAGGTTCATCAAAGTAGAAGTG
-TCGAAACCCAAAGATGTCGTAGAGAAAGCAAAGCATCAAAAGGACTCAATCAGGAATCAA
-AGAATCATTGCAGATTCAATCAATGACCACCTGATCCCTTGTGTATCATCCAAGAACACT
-CTGAAAGAGATGTTTGATTCTCTAAGCAAATTATACGAAGGAAAGAACATCAACCGAAAG
-ATGAACCTAAGATCTCAATTGAAGAATACGAAGATGCAAAAAGGAGAAACAATTCAAGAA
-TATTTCTCCAGAATCTCAGAGATTAAAAAACAGTGAAAAGCAATTGGAGACTCCATAGAT
-GAAGACGAATTTGTAATGACGGCCCTAAATGGTCTTACAAGACCTTGGGATGCATTCATT
-CAAACAATATGTGCCAGAGTCGTGAAGATGCAGTTTGATAGCCTATGGGAAGAATGCATC
-CAAGAAGAGACAAGGGTAGCTAACCGTGAAGCACTACTAGCAAGGGATGATGATCAAGCC
-CTAGCTACTCATACAAAAGGAGGAAGGAAGAAACCCTACTTCAAAAGGGAAACTCATAGA
-GAGCCTCAATCATCAAACAAATTCAATAACAAAGAATCTCATCCAAGGAGATTTCAGAAG
-AAAGGACAACGCAAGGAAAGAGATCTCTCATCCACACAATGTTATCATTGTGATAAGATG
-GGACACAAGGCGAATTCTTGTCCAGTCAGACGAGAAGAATACAAGAGGAAACATACGAGG
-CAACATGCCCACATAGTCGAAGATGAAGAGCCACCTACAAAGATGATCAAGGACCATGTC
-TTGATCTCGGCCCTCTCAGGATCGGTAACACCTGGAGAGGACACATGGCTCATTGATAGT
-GGTGCATCAAAGCACATGACGGGTAAGAAAGTACTCTCTCTTGTATTTCAGAAAATAAGT
-TTTCTCAGAAAGTGACACTTGGAGATGATTACCAATATCCCATCAAGGGAGTGGGAGAAT
-CAAACTACAAGCTAGATTCAGAAAACTCAATAAAGATGAAGGACGTACTCTATGTACCAG
-GCTTGAAGAAGAACTTACTTTCCATATCAGCTTTAGATAAGAAAGGCTATAGAGTTGCCT
-TTATAGATGGAAAAGTTCTTATGTGGGCTAGAGGAGAAACCATAAATGAAGCAATCGTCA
-TTGGAAATGAAGAAAATGGCTTATATCAGCTAAAGGGTCACCCAAAGACTGCCATGACCC
-ATGCCATTAAAAACTCATGCGAACTTTGGCATAGAAGATTAGCCCACATCAACTACAAGG
-CACTACCATACATATGCAAAGTTGTCACAGGTTTACCAGAACTCAAGGTTGATCAAGAAG
-GCATATGCAATGGATGTGCGCAAGGGAAGAATATCAAGAACCCTTTTCCAAAGAGGGACA
-GCAAAGCAGAAGGAGTACTGGAACTCATTCATTCAGACGTGTGTGGCCCAATGCCATCAT
-CCTCCATTAGTGGGTATGTATACTATGTATCATTCATTGATGACTATTCTCGCAAGACCT
-GGATATATTTCTTGAAATCTAAAGATGAAGTATTCAGCAAGTTCAAGGAATTCAAAGCCT
-TGATAGAGAATCTTTCTGAAAGGAAGATTAAAATACTCAGATCAGATAATGGAGGAGCAT
-ATACCTCAAAAGAGTTTGTGAACTTCTGCAGAGATGTTGGGATCAACAAGGAACTCACTA
-CTCCCTATAATCCTCAACAAAATGGTGTAGCTGAAAGGAAGAACAGAACAATTATGGAAG
-TAGTAAAGACCATGATCCATGATCAAGATCTTCCTATGTGCTTATGGGCAGAAGCAGCAA
-TGGCAGTTGTTTATGTGCAGAACCGATTATCCCATAGCGCACTTGGGTTCAAGACCCCGG
-AAGAGATGTTCACCGGAAAGAAGCCAGAGGTAAGCCATCTCAAAATATTTGGCTGCCCAG
-TCTTCATACACATTCCGAAAGACAAAAGAAACAAGTTGGAACCCTCCGGAAAGAAGGGAA
-TATTTGTGGGATACTGTGAGGTCTCCAAGGCCTTCAGAATCTACATACCAGGTCACTACC
-ACATTGAGATCAGCAGGGACGTGACCTTTGATGAAGAAGCAGCACTTAAGAAATCAAGAA
-GATGCCATCTTGAAGAAGTATATGAAGAGGAACCCGTAATTCCCAGGATTGCAAAATCCG
-TAAGGGAAGTTCCCAGAGCTGCAAAACCAAGGAGGGAAGTCGTAACTTCCCCTAATGAGG
-AAACTCCTGAAGACCATAATATAACAGAAATTCAAGAACCTCTTCAAATGACCTTCTCCC
-ATAAAAGAAAGCCTACTTGGGCAAGAGAGCTTATTCAAGATGGAGAGAAGTATGGTGTTC
-CAAAAGGAACCTCGAGACAGGTGAAAACCCCAAAGCCATTCTCCAGTTACACGGCTTTGA
-TGTGTGATCTCCTAGATGAGGAGACTACCTGCTTTGAAGAAGCCATTCAAAAGAAGGAAT
-GGGCAGATGCCATGACAGAGGAATACCAATCCATAATAAAGAACGATGTATGGCAAATAG
-TTCCCAAACCAAAAAGTAAGGATATGGTATCATCAAAATGGCTCTTCAAAATAAAACATG
-CTGCTGATGGAAGTATTGAGAAATATAAAGCAAGATTTGTCCCTCGTGGCTTTTCCCAGA
-AAGAAGGCATTGACTATGAAGAGACATTCGCTCCTGTAGCTAGATACACTTCGATTAGAA
-CCATCATAGCTCTTGCAGCTAAGATGAAATGGAAGTTGCACCAGATGTACGTGAAGACAA
-CTTTCCTGAATGGTGTTATCGAAGAGGAAGTGTATATAGAGCAACCCCAAGGATTTGAGG
-TTGAAGACAGGAAGTCTCATGTCTGCAGATTAAAGAAAGCCTTATACAGATTGAAGCAAG
-CTCCTAGAGCTTGGTATGGCCGTATAGACAGTTTCTTGACAAGCTTGGGCTTTACCAAGA
-GTAAAGTTGATTCAAATCTCTACTTCAAAATTATGAACGATGAGCCAGTAATACTATTGT
-TGTATGTGGATGACTTATTCTTAACTAGAGAAGAAAAGATCATCACCGAATGCACTATTT
-CCTAGGTCTTGAGGTATGGCAGAGTCCAGAGAGGATCTTCCTTAACCAAGGGAAGTACAC
-AGTCGAAATCTTGAAGAGATTCGACATGTTGGAATGCAAGCCCATGAATACACCCATGGA
-AGTGAAGCTGAAGTTGTTGGTCGATACTTCATCAGACTTGATAGATGCCACACTGTACAG
-ACAGATTATTGGATTGCTAATGTACTTGACGAACACCAGACCAAACATTTGTTTTGCCGT
-GAACACCTTGAGTCAGTTTCTGGTAGAACCTAGACATGTTCACCTAGTGGTTGCAAAACA
-TGTGATGAGGTACCTTAAAGATACATTAGATTATGGTCTCAGTTATGACGGAGATCACAA
-TTTCACATTGAGTGGATACACTGATTCAGATTGGGCAGGAAGCGTTGCTGACAGAAAAAG
-CACTTCCGGATGCTGTTTTAGTTTGGGATCGGCCATGATCTCGTGGCAGAGTAGGAAGCA
-ATCAAGTGTTGCTCTCAGCATAGCGGAAGCAGAGTACATAGTTGCATGTTCTGCTAGCTG
-CGAAGCTATATGGCTTCGAAAGTTGCTGATCGGTCTATTGACCTAGAAATGGAAGCAACC
-ACGATCCTATGTGACAACCAGAGCTGCATAAAGATGANNNNNNNAGAATCCTGTATTCCA
-TGACAGGTCGAAGCACATAGAGATTCGCTATCATTACATCCGTGACATGGTGCAGAGAGG
-AGCCTTGAAGCTCCAGTACATTAGCACGGATGAACAGGTTGCTGACGTGTTGACCAAACC
-TCTATCTCACGTAAAGTTTGAACACTTTCGAGATAAGCTTGGTATAGTCCAAAAGGACCC
-TCCCTGAAAGGGGGAGTATATATTTGTTCCTTGCTTCTGACCTCGTTGTTAGACGTAAAG
-CAAGATGAGTCATTGCTTCTGACCTTGCTGTTAGACGTAAAGCATGACGCTGTGTGTTCC
-TTGCTTCTGACCTCGCTGTTAGACGTAAAGCAAGATGATTCATTGCTTATGACCTCGTTG
-TTAGACGTAAAGCAAGATGAGTCATTGCTTCTAACCTCGTTGTTAGACGTAAAGCAAGAT
-GAGTCATTGCTTCTGACCTCGTTGTTAGACGTAAAGCATGACGATGTGTGTTCCTTGCTT
-CTGACCTCATTGTTAGACGTAAAGCAAGATGATTCCTCGCTTTTGACCTCGTTGTTAGAC
-GTAAAGCGAGATGTTGATGTAAAGCAAGAATACCCTTCTTGTTAAGGGAGAGTGTTGAAA
-TAATGTAACTGCAAAGAGTATTCTTATTATTATTGATATATTATTCATGGGATCAATCCC
-CATTGTGGATTGATCATGTCGATTATTGTATTAGGACCAAATCCCCTTTTGCGGATTGGT
-CAACAGACAATTGTAATAGGCAGAATAAGAAGTCGGCCCCAACAGTTATTATTAAGACCT
-AGAAATATAATAAAGGTGGGTTTACCCACCCAGAGTGAGAAGTCGGCCCTGCCAGTAAAG
-ACACTTCACACGTGCCAAACTTGTATATATAGAGAGGCCAATGCCTCACTTTGACACACA
-ACTCACTTGCTCATTCTGAGAGGCAAGTTTGGATTTACCAGTTGGAGAGAGAGAGAAGAG
-TGGTGCATCTTTTGGAGGAGGACTTTCTATATTGGTTTGAGTTATCTCTTGACATTGTCT
-TGGCAATCTATAATAAGGAAGTTTTACTAGGTTTTCTTCCCCTAGAGAGTTTCCCTGGAT
-AAATGTTGTGTCTCTTGTGAATGTGTATTTCTCAGTGATCTTGTTCTTATGTTGTTGTTA
-TCTATTGAAATGCAAAAAACTATAATAATGGCATAAACATTAACAAAAAC
->Wicker_Bianca_AF521177-1
-CTCTATGTTAGGAATTAATTAAATGTATTAATTAATGGGATAATCCCTGCGTTGCCGGTT
-GCCTTGTTTTAGCAACCGTTCCTTGTAAACCGCCTCTGTAACAGGGGTATAAATACCCAC
-ATCTTCAATCAATGAAAACACTGTTCCATCATTCTGTCACTTTCACTACTTTACACGTTA
-TCAGCGCTCGCTCTGCCGAGAGCGACAGAGAGCCAAGAGAAAGGTGAGAATGGCAGGGAG
-AGATTTGTCCTCGCTTGCTTTTGCTTTCGCACGTTTCCTGCAGAAAGAAGACAGCCGCTT
-CACTCGCACGCAGCGCCACCGCATTGCACGTCGCCGTCAGGGTCTTGGTGCAAGGAATGG
-CCCTCGCCGCCGTTCCTTCACCAGGAACCACCGCCAGAACCGGAGTGGCCCTCATCGCCG
-CTTCTTCGCCGGGAACCACCGCCAGAACCGCCGCCGTGGGGCCATCAGCGTCGTTCCTCG
-AAGAAGATGTGATGTTCCCCTGTGAACTTGCGCCGCCGCCTCTTCCTCCATACTGCATGC
-AGCACGGATTCGGGCCATGCCCTGCGCGCACGGATGGCCACGTCCCGGAGCTGCCATCCC
-CGACGCCGGCAGCGGCAGCACACACCGGCCCCGTCCCGGATCTGCCATCTCCGACACCGG
-ATCGAGAGGAACGAGGCGGTTATCCCACCATCCCCATCTTGAACATCCAGATCAAGGTTG
-AAGAAGAGGGGATGGAGGCCATGGGCTCGTCGTCGTCGCTCCGCCCTCCATCACCGGCGA
-TACCTCCTCCTCCTCCGGCTCCGCCCCTTCCGCTGACGCCACCGCCGGAAGCTCGCCGGA
-TCCTGTGCTAGTTCGCCGCTGCTATGGCGCAGAACCGGGCGGCTCTTCGTGGCGCGTGGT
-CGCCGGACGCCCTGGGCTTCGCCGGCGCACCGGAGGCAAGCAGCAGCGGGAGTAGCCGGG
-CTGCGCTGCGGGGCCAGCCCCGTTTTCCTTGAAGCAGCCATGGGGAGAGGAGGCTGGAGT
-TGTGAGGTGTTTGGGTCTGCATCGGGAAGAAGATGGGAAACAGGAGAGAAGTGGCTGTGT
-GGCCTCGGCTTGCTGCCTTGCTCTCTCCCTTATCCATTTCTCCAACCGGTATATGGTCCA
-ACACAGGCCACGTCCACTCCAAACTCCAAGCCACGTTTTCCTCTCCAAAAGGCCTACAAG
-CCACGTTTCCTCTTCAAAAGGCATACAGGCCAGGAAATAAAGTGACTATTAGCGTTGTGT
-TTTAATCATAGTACTACTATGCTGCAATTACTATATTGCACTGCAGATTGTTCCTTTTTA
-TTTCAGTGTGATATGTTATTGTATTAAGAACCTCTCCTTATCATATTCACTCGGTATTGT
-ACTGTAGTATGAATACTTAGATTGTATATTGTCTAAAATAAAGTCTCAGATTATGTGTAC
-ATATTCTATATAATTGCCTCAGCAATTTTCATTTTTTTAGAATATGTAGTTTTCAAGTAC
-AATTTTTTTTTAATTCAAATTTTTGGGATCACAAGGTAGATGAGGCATCTACTGCATTTT
-GCAGATTATCCTCATCGCTGAAAGATCTACATTTTGCCTTCGTTATTTTGGCAAAATGAC
-TATCTTCGAGTGCTCTCCCGAATATGCGAATTAATGTGACTACCTCAAATTTTTACAAAT
-CACAAGGTAATTGTGTGATCTACTGCATAATTTGCAGATTATCCACTCTTGCTGAGAGGT
-CTACATCTAGTCTTTTGACAAGATGACTACCTTCAAAGTGTTTTTGTAAAATATAGTATG
-ACACAAGGTAATGGACTACGAACATCTACTGGTCAAAACCAGACTATGTTCTCCACTACT
-ATGAGATCTACACCCCAACGGTGAATATTTTCGAAGTGTCATATACATAAAATGAGGTCT
-ACACATAAAGCATCAGCTATACTTGAAAATTTTGCTTCCTAAAGCATTTGTTGTAACTTA
-TATTTTACTCTCATAGTAAAACTAAATTATGCATGAAAATACCATGCAGGAAATGGCTGG
-TGTCATGCATCGTGAATTTCATGAACTTGAACTAGATGGTAGTATCTATTTACCATGGGC
-TATGGATGCAAAGATAGCCCTCGAAAGCCGTAAACTCGGTTTCACTATCACCACACCCGT
-TGAAGGCGCCGGGAGAAATCCCCACGGCAGCCAAATATAGAGCTTTAAGTTTCTTAAGGC
-ACCATCTCCATTCAGACTTAAAGTCGGAATATTTGATGGAAGAAGATCCACTGGTTTTGT
-GGAACTCTCTCAAGGAGAGATATGACCAGCAAAGAGCAGTCATGCTGCCAGAAGCACAGA
-GAGAATGGTCCCTCATAAGGTTCCAAGACTTCAAATCTGTGGCAGCATATAACTCTGCAG
-TTCACAAGGTTAACTCAAAACTAAGGTTTTGCAATCAAGAAATTTCTGAAGAAGACCTTA
-TTGAGAAGACCTTGTGCACTTTCCACCCCTCGATGAGGGTACTACAATAGAAGTACCGTC
-AACAAAAATACAAAAAGTATTCTGAGCTCATATACACTTTACTTCAGGCTGAGAAACATG
-ATGAACTTCTCATGAAGAATCATCAGACACGCCCAACGGGCTCAATGCCACTCCCTGAAG
-CACATGCTAACACTCAGTTTACTAAAAAGTATGGGGGCAACAAAAAGAATTTCAAAAAAT
-TCAATGGAAAGTGGAAAAGGAACAACAAGCAGAAAAGCTTTGGTCAATCTAAAGGTAAAG
-GTCACTTCAAGAAAAATGACCGAAACACCAACTCCGAGATTTGTCAAAGATGTGGATGTA
-CTAACCATCGTACTAGTAAATGCCGAACTCCCAAGCATCTAGCGGATTTATACATCAAAT
-CCACTGGGAAAGGCAAACAAGTTCATGGAAAAGCCGAAGCTCACTTCAACGCCTTACAAC
-AAGAAGAAAACCTTGAAGCTAGCACTTCTCAAAGCGCTCCTAAGGAAACAAGGCAGAAGG
-ATGAAGATCTTCTTGATGTTGGCAACATGATGGTGGAATACACCCAAGACGCATAGAGAT
-CTTATATAATCTCCACATCACTCATTTGATGTTATCAACTATTTTATTGTAATAATGGAT
-GTTATAATTTGTATAACTCTAAGTAGAATAAAAGTCCTACGGACCAATCGTATTATGTAA
-TTCAAACATAATGTCATATTTATATTTGTAACTGTAATATGAATACTTTGTATGTATATA
-TTTATATGTGAGTAATATGAATAAAGTTTCATCCTAAAATATTCTTTTACTCTATATAGA
-TTTTACGGGAAAATAATCCAATGGAAGAAGAATTATGTTTGGTGGACAGTTGTACCAGTA
-ACACAATATTAAGGGAAATAAAATATTTCCAAACTCTAACTAAGAGAAAAGGGAATATTA
-TGACCATTGACAGTCGCGATGCGTCGATTATTGGTTCAGGACGAGCCACACTCGTTCTAC
-CTATGGGTAGTACAATTGCAATTGAGGATGCACTATTGTATCCTCAATCTACACGCACTC
-TTCTAAGTTTCAAAGACCTCAGATCAAATAACTTCCATTTGGAAACAATATCTGAAAATA
-ATTTTGAACATTTGCTTTTAACAAAGAGTAATGGGTCTGAGAAACAAATTCTTGAGAAAT
-TCCCCTCACTTTCATCTGGATTATATTACAGTTATATAAAACCCGTACCACATGTTGCGT
-ACAAAATAATTTTTCAAGATCTTGATAAATTCAAGACTTGGCATGATCGCCTAGGTCATC
-CTGGCGTAGGGATGATGACAAAAATTATTGACAATTCTATTGGTCACAGCCTTCCAACTA
-TCAATTTCTCAAAATTATCAGATTTTGTGTGCACCGCATGTGCAACTGGAAAATTAATTA
-TAAAACCATCTTATCTTAAAGTTAAAAATGAGTCATTAAATTTTCTTGAACGCATTCAAG
-GAGATATATGTGGTCCAATTCAAGCACTATCAGGACCTTTTAGATATTTCATGGTGCTCA
-TATATGCATCTACTAGATGGTCACATGTGTGTCTATTGTCCACACGAAATCATGCTTTTT
-CCCAGCTTATTGATCAAATTATCAAATTAAGAGCAAATCATCCTAAAAATAGGATAAAAA
-CAATTCGAATGGATAATGCCGCTGAATTTTCTTCACGTGCATTCAATGACTATTGCATGG
-CTATGGGCATTCATTTAGAACATTTTGTGCCTTATGTTCATACTCAAAATGGTTTGGCTG
-AATCTCTCATCAAAAGAGTAAAATTAGTTGCTCGACCACTATTACAGAATTGTAATTTAC
-CAGCATCATGTTGGGCACATGCGGTATTACACGCCGCAGATCTGATACAAATCAGACCAA
-CTGCATATCATACAACCTCCCCGCTACAACTAGTACGTAGCACTCAGCCAAGTATTTCCC
-ATCTACGAAAATTCGGTTGCGCAGTATACGTACCGATATCACCACCGCAGCGTACATCCA
-TGGGCCCCCACAGAAAACTAGGGATCTATGTGGGTTATAACTCTCCGTCAATAATAAAAT
-ATCTTGAACCTCTTACAGGGGACCTGTTTACTGCCCGCTACGCTGATTCAATTTTTGATG
-AGGACCATTTTCAGGCATTAGGGGGAGAATCAAACCACAAAGAATGCCAGGAAATAGATT
-GGAATGTAACAGGCATTCAGTCCTTAGATCCACGTACTAAAGAATCTGAAACTGAAGTTC
-AGAGGATCATAGATTTGCAACATATTGCAAATAATCTGCCAGATGCATTTACTGACCATA
-AAGGTGTCACTAAATCACATATTCCCGCTGTTAATGCACCAGAACGAGTGGAGGTACCAA
-CTAAAACCACTCAAACCACAAATGAGAGTAAGAGGGGGAGAAATCTGGTTAGTCGGAATA
-TAGCTTCTCAAAAGCCTCCGCGGAAACAGAGGAAATCAAATCCTCTACCAGTAAATGCAA
-TTCAACCTCAAGTTGAAGGACACCAACCAGATGCTCAACATCTTGAACCTAGCATAAATG
-CGCATAAAAACATAATTGCTGGGACATCGGGACACCATGGTTCTATTGTTGTGGGAAATC
-ACATAGAGTCTGAAGGTATAAAAGAAATTTCCATAAACTATACAGATTCAGGAGAATCAT
-ATAATAGAGAGACTCCAATTGTCGACATATATTTCGCCTCTAAAATTGCTGAAACCCTTC
-AAGTGGATCCAGAACCAAAGACCGTCAGGGAGTGCCTCAAGCGTCCTGATTGGCCTAAAT
-GGAAGGAAGCAATTGAGGCAGAAGTGCGCTCGCTCAACAAAAGAGAGGTATTTTCCTCGG
-TAATACCTACTCCTCATAATGTATTCCCTGTTGGAGCAAAATGGGTTTTTGTTCGAAAAA
-GGAATGAAAACAATGAGGTGGTGAGATACAAAGCGAGGCTTGTAGCACAAGGGTTCACGC
-AGAGGCCCGACATCGATTACGATGATACATACTCTCCTGTAATGAGTGGAATAACGTTTC
-GATACTTAATATCTTTGGCAGTACAAATGAATTTATCTATGCAGTTGATGGATGTAGTGA
-CAACATACTTATATGGGTCACTCAAATCGGACATATATATGAAAGTCCCTGAATGACTTA
-AAATGTCGAATCCAAAAGAAAATCGCAACGCATATTGTGTAAAATTACAAAAGTCACTAT
-ATGGCTTAAAACAATCGGGTAGAATGTGGTATAACCGATTGAGTGAGTTCCTTATTCAAA
-AAGGCTACTCAAATAATGATGATTGCCCTTGTGTATTGATAAAGAAATCCTCAAATGGAT
-TTTGCATCATCTCAGTGTACGTTGATGACCTCAATATCATGGGAAGTACACCTGATATCG
-AAGAAGCACACAATCATCTAATGGCGAATTTGAGATGAAAGATTTGGGAAAGACCAAATT
-CTGCTTAGGCTTACAGCTTGAGCATCTTCCCTCGGGAATTTTAGTATACCAACCTGCATA
-TATTCAAAAGGTTTTGGAAAATTTTAATATGGATAAATCATATCCAACCAAAACACCCAT
-GGTTGTCAGATCCCTTGATATGAATAAAGATCCTTTTAGACCTCGGGATGATGACGAAGA
-GATATTAGGACCTGAGTTCCCGTATCTCAGTGCCATTGGTGCGTTAATATACCTTGCAAA
-TTGCACCAGGCGTGATATTGCATTTACAGTGAATTTACTAGTTAGACATAGCGTTGCTTC
-ATCGTAACGTCATTGGACGGGAGTAAATAATATCCTTAGATATTTACATGGCACAAAGGA
-TCTTGGCTTATTCTATCAGATAAACCAAGATATGACTATGGTANGATATACTGATNGCTG
-CTATCTATCTGATCCTCACAATGTCAGGTCACAAACAGGTTTCGTTTTCTTATATGGTGG
-AACTGCTTTTTCATGGAAGTCAACAAAACAGACTCTCCTAGCAACCTCCACTAATCATTC
-CTGAACTTGTTGCATTTTTTGAAGCATCTTAAGATTGTGTATGGCTTCGCAGGATGATTA
-ACCCTATTCAAACTTCATGTGGTGTTGGTTCATTAGGATCACCAACTATTATATATGAAG
-ATAATGCAGCCTCGCCATTGTCTCAAAATGCAAATGTGGTTTATGTTAGAAAGTAATATC
-CCCACACCTATATTCTTCCTAAGGTTATTTTAATCCTCAGTGCATTACAGAAGGGATGGA
-GAAATTTGATATTTTCCCAAATTAAATCATGTGCCAATTTAGCAGATTTGTTCCCCAAGT
-TTTTTCCAAATTCAACGTTCCAGAAATCCATTCATGGAAATTGGTATAGAGATGATTCCC
-GAGATTTGCAAAGTTCAGGGGGAGAAATCTCCCTGAAAATATACCCGTTTAATTATCATC
-AGGTAATGAATATTGTACTCTTTTCCTTTATGAGTTTTTCCAACAGGGTTTCTCATATAA
-GGTTTTTAACGAGACAATTAAATACAAGTATTGATGCATGCCATATCATATTTCTCCTTA
-TATTTTTCCTACTAGGTTTTAAAGGAGTTTTTTATGGCACATCTCATTGCACTCTTTTCA
-TTATGAGTTTTTTTGACATTTTCTCTCATAATGTTTTTAATGAAGCCATATCTTATCAAT
-GATCATATATCATACTTTCTATTTTCCCTATCGGGGTTTTAAAGGAAGTACTCAAGACAT
-ATATTGTTCTCTAAACTCAAAAATGAGTTTTATCCCTATATAAAGGTTTTCTCAAATGAG
-TTATCATGAGGCAATAATCATTATATGTTGCACAATTTTTTCCTTATTATTTTTCCACTG
-GGTTTAAAGGAGTTTTAGCAACATATCTACACTATTGTCCTTATATTTTTTCCACAGGGT
-TTTTGGAGGAGACTTTAAAGATTATACAACGACTTTTCAAGATGAAGATGAGGAACATTC
-TTAAAGAGAAAAATTTACAAGGATTATTATTTATCAAGATGATGCACATTTACACAGACA
-AGCATGGATTAGGGAGAGTGTTAGGAATTAATTAAATGTATTAATTAATGGGATAATCCC
-TGCGTTGCCGGTTGCCTTGTTTTAGCAACCGTTCCTTGTAAACCGCCTCTGTAACAAGGG
-TATAAATACCCACATCTTCAATCAATGAAAACACTGTTCCATCATTCTGTCACTTTTACT
-ACTTTACACTCTA
--- a/tests.sh	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,25 +0,0 @@
-#!/bin/bash
-
-export DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
-export TEXT_DATA="$DIR/test-data"
-export classification_tbl=${DIR}/tool-data/protein_domains/Viridiplantae_v3.0_class
-export pdb=${DIR}/tool-data/protein_domains/Viridiplantae_v3.0_pdb
-
-# make sure  dir for testing exists
-mkdir -p $DIR/tmp
-
-######## DANTE
-## single_seq, for/rev strand of mapping
-$DIR/dante.py -q ${TEXT_DATA}/GEPY_test_long_1 -pdb $pdb -cs $classification_tbl \
-              --domain_gff $PWD/tmp/single_fasta.gff3
-## multifasta
-$DIR/dante.py -q ${TEXT_DATA}/vyber-Ty1_01.fasta -pdb $pdb -cs $classification_tbl \
-              --domain_gff $PWD/tmp/multifasta.gff3
-## multifasta_win
-$DIR/dante.py -q ${TEXT_DATA}/vyber-Ty1_01.fasta -pdb $pdb -cs $classification_tbl \
-              -wd 3100 -od 1500 --domain_gff $PWD/tmp/multifasta_win.gff3
-
-# test filtering
-$DIR/dante_gff_output_filtering.py --dom_gff $PWD/tmp/single_fasta.gff3 \
-                                   --domains_filtered $PWD/tmp/single_fasta_filtered.gff3 \
-
--- a/tool-data/rexdb_versions.loc.sample	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,6 +0,0 @@
-#name	value is base name for file with classification and pdb
-Viridiplantae_version_3.0	Viridiplantae_v3.0
-Viridiplantae_version_2.2	Viridiplantae_v2.2
-Metazoa_version_3.1	Metazoa_v3.1
-Metazoa_version_3.0	Metazoa_v3.0
-
--- a/tool-data/select_domain.loc.sample	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,14 +0,0 @@
-All
-GAG
-INT
-PROT
-RH
-RT
-aRH
-CHDCR
-CHDII
-TPase
-YR
-HEL1
-HEL2
-ENDO
--- a/tool_dependencies.xml	Fri Apr 03 07:27:59 2020 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,9 +0,0 @@
-<?xml version="1.0" ?>
-<tool_dependency>
-    <package name="rexdb" version="1.0">
-        <repository changeset_revision="ac89c185fbd0" name="package_rexdb_1_0" owner="petr-novak" prior_installation_required="True" toolshed="https://toolshed.g2.bx.psu.edu"/>
-        <readme>
-      prepare rexdb database for dante
-    </readme>
-    </package>
-</tool_dependency>
\ No newline at end of file