Mercurial > repos > proteore > proteore_clusterprofiler
view GO-enrich.R @ 6:5e16cec55146 draft
planemo upload commit 2da0aec067fd35a8ec102ce27ec4bac8f54b1c30-dirty
author | proteore |
---|---|
date | Thu, 29 Mar 2018 11:43:28 -0400 |
parents | 8a91f58782df |
children | 4609346d8108 |
line wrap: on
line source
library(clusterProfiler) #library(org.Sc.sgd.db) library(org.Hs.eg.db) library(org.Mm.eg.db) # Read file and return file content as data.frame readfile = function(filename, header) { if (header == "true") { # Read only first line of the file as header: headers <- read.table(filename, nrows = 1, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") #Read the data of the files (skipping the first row) file <- read.table(filename, skip = 1, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") # Remove empty rows file <- file[!apply(is.na(file) | file == "", 1, all), , drop=FALSE] #And assign the header to the data names(file) <- headers } else { file <- read.table(filename, header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE, na.strings=c("", "NA"), blank.lines.skip = TRUE, quote = "") # Remove empty rows file <- file[!apply(is.na(file) | file == "", 1, all), , drop=FALSE] } return(file) } repartition.GO <- function(geneid, orgdb, ontology, level=3, readable=TRUE) { ggo<-groupGO(gene=geneid, OrgDb = orgdb, ont=ontology, level=level, readable=TRUE) name <- paste("GGO.", ontology, ".png", sep = "") png(name) p <- barplot(ggo, showCategory=10) print(p) dev.off() return(ggo) } # GO over-representation test enrich.GO <- function(geneid, universe, orgdb, ontology, pval_cutoff, qval_cutoff) { ego<-enrichGO(gene=geneid, universe=universe, OrgDb=orgdb, keytype="ENTREZID", ont=ontology, pAdjustMethod="BH", pvalueCutoff=pval_cutoff, qvalueCutoff=qval_cutoff, readable=TRUE) # Plot bar & dot plots bar_name <- paste("EGO.", ontology, ".bar.png", sep = "") png(bar_name) p <- barplot(ego) print(p) dev.off() dot_name <- paste("EGO.", ontology, ".dot.png", sep = "") png(dot_name) p <- dotplot(ego, showCategory=10) print(p) dev.off() return(ego) } clusterProfiler = function() { args <- commandArgs(TRUE) if(length(args)<1) { args <- c("--help") } # Help section if("--help" %in% args) { cat("clusterProfiler Enrichment Analysis Arguments: --input_type: type of input (list of id or filename) --input: input --ncol: the column number which contains list of input IDs --header: true/false if your file contains a header --id_type: the type of input IDs (UniProt/EntrezID) --universe_type: list or filename --universe: background IDs list --uncol: the column number which contains background IDs list --uheader: true/false if the background IDs file contains header --universe_id_type: the type of universe IDs (UniProt/EntrezID) --species --onto_opt: ontology options --go_function: groupGO/enrichGO --level: 1-3 --pval_cutoff --qval_cutoff --text_output: text output filename \n") q(save="no") } # Parse arguments parseArgs <- function(x) strsplit(sub("^--", "", x), "=") argsDF <- as.data.frame(do.call("rbind", parseArgs(args))) args <- as.list(as.character(argsDF$V2)) names(args) <- argsDF$V1 #print(args) # Extract OrgDb if (args$species=="human") { orgdb<-org.Hs.eg.db } else if (args$species=="mouse") { orgdb<-org.Mm.eg.db } else if (args$species=="rat") { orgdb<-org.Rn.eg.db } # Extract input IDs input_type = args$input_type if (input_type == "text") { input = strsplit(args$input, "[ \t\n]+")[[1]] } else if (input_type == "file") { filename = args$input ncol = args$ncol # Check ncol if (! as.numeric(gsub("c", "", ncol)) %% 1 == 0) { stop("Please enter the right format for column number: c[number]") } else { ncol = as.numeric(gsub("c", "", ncol)) } header = args$header # Get file content file = readfile(filename, header) # Extract Protein IDs list input = c() for (row in as.character(file[,ncol])) { input = c(input, strsplit(row, ";")[[1]][1]) } } id_type = args$id_type ## Get input gene list from input IDs #ID format Conversion #This case : from UNIPROT (protein id) to ENTREZ (gene id) #bitr = conversion function from clusterProfiler if (id_type=="Uniprot") { idFrom<-"UNIPROT" idTo<-"ENTREZID" gene<-bitr(input, fromType=idFrom, toType=idTo, OrgDb=orgdb) gene<-unique(gene$ENTREZID) } else if (id_type=="Entrez") { gene<-unique(input) } ontology <- strsplit(args$onto_opt, ",")[[1]] ## Extract GGO/EGO arguments if (args$go_represent == "true") { go_represent <- args$go_represent level <- as.numeric(args$level) } if (args$go_enrich == "true") { go_enrich <- args$go_enrich pval_cutoff <- as.numeric(args$pval_cutoff) qval_cutoff <- as.numeric(args$qval_cutoff) # Extract universe background genes (same as input file) if (!is.null(args$universe_type)) { universe_type = args$universe_type if (universe_type == "text") { universe = strsplit(args$universe, "[ \t\n]+")[[1]] } else if (universe_type == "file") { universe_filename = args$universe universe_ncol = args$uncol # Check ncol if (! as.numeric(gsub("c", "", universe_ncol)) %% 1 == 0) { stop("Please enter the right format for column number: c[number]") } else { universe_ncol = as.numeric(gsub("c", "", universe_ncol)) } universe_header = args$uheader # Get file content universe_file = readfile(universe_filename, universe_header) # Extract Protein IDs list universe = c() for (row in as.character(universe_file[,universe_ncol])) { universe = c(universe, strsplit(row, ";")[[1]][1]) } } universe_id_type = args$universe_id_type ##to initialize if (universe_id_type=="Uniprot") { idFrom<-"UNIPROT" idTo<-"ENTREZID" universe_gene<-bitr(universe, fromType=idFrom, toType=idTo, OrgDb=orgdb) universe_gene<-unique(universe_gene$ENTREZID) } else if (universe_id_type=="Entrez") { universe_gene<-unique(universe) } } else { universe_gene = NULL } } ##enrichGO : GO over-representation test for (onto in ontology) { if (args$go_represent == "true") { ggo<-repartition.GO(gene, orgdb, onto, level, readable=TRUE) write.table(ggo, args$text_output, append = TRUE, sep="\t", row.names = FALSE, quote=FALSE) } if (args$go_enrich == "true") { ego<-enrich.GO(gene, universe_gene, orgdb, onto, pval_cutoff, qval_cutoff) write.table(ego, args$text_output, append = TRUE, sep="\t", row.names = FALSE, quote=FALSE) } } } clusterProfiler()