0
|
1 /* The MIT License
|
|
2
|
|
3 Copyright (c) 2008, 2010 by Attractive Chaos <attractor@live.co.uk>
|
|
4
|
|
5 Permission is hereby granted, free of charge, to any person obtaining
|
|
6 a copy of this software and associated documentation files (the
|
|
7 "Software"), to deal in the Software without restriction, including
|
|
8 without limitation the rights to use, copy, modify, merge, publish,
|
|
9 distribute, sublicense, and/or sell copies of the Software, and to
|
|
10 permit persons to whom the Software is furnished to do so, subject to
|
|
11 the following conditions:
|
|
12
|
|
13 The above copyright notice and this permission notice shall be
|
|
14 included in all copies or substantial portions of the Software.
|
|
15
|
|
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
20 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
21 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
22 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
23 SOFTWARE.
|
|
24 */
|
|
25
|
|
26 /* Hooke-Jeeves algorithm for nonlinear minimization
|
|
27
|
|
28 Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and
|
|
29 the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the
|
|
30 papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM
|
|
31 6(6):313-314). The original algorithm was designed by Hooke and
|
|
32 Jeeves (ACM 8:212-229). This program is further revised according to
|
|
33 Johnson's implementation at Netlib (opt/hooke.c).
|
|
34
|
|
35 Hooke-Jeeves algorithm is very simple and it works quite well on a
|
|
36 few examples. However, it might fail to converge due to its heuristic
|
|
37 nature. A possible improvement, as is suggested by Johnson, may be to
|
|
38 choose a small r at the beginning to quickly approach to the minimum
|
|
39 and a large r at later step to hit the minimum.
|
|
40 */
|
|
41
|
|
42 #include <stdlib.h>
|
|
43 #include <string.h>
|
|
44 #include <math.h>
|
|
45 #include "kmin.h"
|
|
46
|
|
47 static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls)
|
|
48 {
|
|
49 int k, j = *n_calls;
|
|
50 double ftmp;
|
|
51 for (k = 0; k != n; ++k) {
|
|
52 x1[k] += dx[k];
|
|
53 ftmp = func(n, x1, data); ++j;
|
|
54 if (ftmp < fx1) fx1 = ftmp;
|
|
55 else { /* search the opposite direction */
|
|
56 dx[k] = 0.0 - dx[k];
|
|
57 x1[k] += dx[k] + dx[k];
|
|
58 ftmp = func(n, x1, data); ++j;
|
|
59 if (ftmp < fx1) fx1 = ftmp;
|
|
60 else x1[k] -= dx[k]; /* back to the original x[k] */
|
|
61 }
|
|
62 }
|
|
63 *n_calls = j;
|
|
64 return fx1; /* here: fx1=f(n,x1) */
|
|
65 }
|
|
66
|
|
67 double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls)
|
|
68 {
|
|
69 double fx, fx1, *x1, *dx, radius;
|
|
70 int k, n_calls = 0;
|
|
71 x1 = (double*)calloc(n, sizeof(double));
|
|
72 dx = (double*)calloc(n, sizeof(double));
|
|
73 for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */
|
|
74 dx[k] = fabs(x[k]) * r;
|
|
75 if (dx[k] == 0) dx[k] = r;
|
|
76 }
|
|
77 radius = r;
|
|
78 fx1 = fx = func(n, x, data); ++n_calls;
|
|
79 for (;;) {
|
|
80 memcpy(x1, x, n * sizeof(double)); /* x1 = x */
|
|
81 fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls);
|
|
82 while (fx1 < fx) {
|
|
83 for (k = 0; k != n; ++k) {
|
|
84 double t = x[k];
|
|
85 dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]);
|
|
86 x[k] = x1[k];
|
|
87 x1[k] = x1[k] + x1[k] - t;
|
|
88 }
|
|
89 fx = fx1;
|
|
90 if (n_calls >= max_calls) break;
|
|
91 fx1 = func(n, x1, data); ++n_calls;
|
|
92 fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls);
|
|
93 if (fx1 >= fx) break;
|
|
94 for (k = 0; k != n; ++k)
|
|
95 if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break;
|
|
96 if (k == n) break;
|
|
97 }
|
|
98 if (radius >= eps) {
|
|
99 if (n_calls >= max_calls) break;
|
|
100 radius *= r;
|
|
101 for (k = 0; k != n; ++k) dx[k] *= r;
|
|
102 } else break; /* converge */
|
|
103 }
|
|
104 free(x1); free(dx);
|
|
105 return fx1;
|
|
106 }
|
|
107
|
|
108 // I copied this function somewhere several years ago with some of my modifications, but I forgot the source.
|
|
109 double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin)
|
|
110 {
|
|
111 double bound, u, r, q, fu, tmp, fa, fb, fc, c;
|
|
112 const double gold1 = 1.6180339887;
|
|
113 const double gold2 = 0.3819660113;
|
|
114 const double tiny = 1e-20;
|
|
115 const int max_iter = 100;
|
|
116
|
|
117 double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw;
|
|
118 int iter;
|
|
119
|
|
120 fa = func(a, data); fb = func(b, data);
|
|
121 if (fb > fa) { // swap, such that f(a) > f(b)
|
|
122 tmp = a; a = b; b = tmp;
|
|
123 tmp = fa; fa = fb; fb = tmp;
|
|
124 }
|
|
125 c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation
|
|
126 while (fb > fc) {
|
|
127 bound = b + 100.0 * (c - b); // the farthest point where we want to go
|
|
128 r = (b - a) * (fb - fc);
|
|
129 q = (b - c) * (fb - fa);
|
|
130 if (fabs(q - r) < tiny) { // avoid 0 denominator
|
|
131 tmp = q > r? tiny : 0.0 - tiny;
|
|
132 } else tmp = q - r;
|
|
133 u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point
|
|
134 if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c
|
|
135 fu = func(u, data);
|
|
136 if (fu < fc) { // (b,u,c) bracket the minimum
|
|
137 a = b; b = u; fa = fb; fb = fu;
|
|
138 break;
|
|
139 } else if (fu > fb) { // (a,b,u) bracket the minimum
|
|
140 c = u; fc = fu;
|
|
141 break;
|
|
142 }
|
|
143 u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation
|
|
144 } else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound
|
|
145 fu = func(u, data);
|
|
146 if (fu < fc) { // fb > fc > fu
|
|
147 b = c; c = u; u = c + gold1 * (c - b);
|
|
148 fb = fc; fc = fu; fu = func(u, data);
|
|
149 } else { // (b,c,u) bracket the minimum
|
|
150 a = b; b = c; c = u;
|
|
151 fa = fb; fb = fc; fc = fu;
|
|
152 break;
|
|
153 }
|
|
154 } else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound
|
|
155 u = bound; fu = func(u, data);
|
|
156 } else { // u goes the other way around, use golden section extrapolation
|
|
157 u = c + gold1 * (c - b); fu = func(u, data);
|
|
158 }
|
|
159 a = b; b = c; c = u;
|
|
160 fa = fb; fb = fc; fc = fu;
|
|
161 }
|
|
162 if (a > c) u = a, a = c, c = u; // swap
|
|
163
|
|
164 // now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
|
|
165 e = d = 0.0;
|
|
166 w = v = b; fv = fw = fb;
|
|
167 for (iter = 0; iter != max_iter; ++iter) {
|
|
168 mid = 0.5 * (a + c);
|
|
169 tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny);
|
|
170 if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) {
|
|
171 *xmin = b; return fb; // found
|
|
172 }
|
|
173 if (fabs(e) > tol1) {
|
|
174 // related to parabolic interpolation
|
|
175 r = (b - w) * (fb - fv);
|
|
176 q = (b - v) * (fb - fw);
|
|
177 p = (b - v) * q - (b - w) * r;
|
|
178 q = 2.0 * (q - r);
|
|
179 if (q > 0.0) p = 0.0 - p;
|
|
180 else q = 0.0 - q;
|
|
181 eold = e; e = d;
|
|
182 if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) {
|
|
183 d = gold2 * (e = (b >= mid ? a - b : c - b));
|
|
184 } else {
|
|
185 d = p / q; u = b + d; // actual parabolic interpolation happens here
|
|
186 if (u - a < tol2 || c - u < tol2)
|
|
187 d = (mid > b)? tol1 : 0.0 - tol1;
|
|
188 }
|
|
189 } else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation
|
|
190 u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1);
|
|
191 fu = func(u, data);
|
|
192 if (fu <= fb) { // u is the minimum point so far
|
|
193 if (u >= b) a = b;
|
|
194 else c = b;
|
|
195 v = w; w = b; b = u; fv = fw; fw = fb; fb = fu;
|
|
196 } else { // adjust (a,c) and (u,v,w)
|
|
197 if (u < b) a = u;
|
|
198 else c = u;
|
|
199 if (fu <= fw || w == b) {
|
|
200 v = w; w = u;
|
|
201 fv = fw; fw = fu;
|
|
202 } else if (fu <= fv || v == b || v == w) {
|
|
203 v = u; fv = fu;
|
|
204 }
|
|
205 }
|
|
206 }
|
|
207 *xmin = b;
|
|
208 return fb;
|
|
209 }
|