comparison galaxy-conf/KMeans.xml @ 24:a77e126ae856 draft

Reupload since last upload did not load correctly
author timpalpant
date Tue, 19 Jun 2012 22:15:09 -0400
parents 9d56b5b85740
children b43c420a6135
comparison
equal deleted inserted replaced
23:01d5d20eaadd 24:a77e126ae856
1 <tool id="KMeans" name="KMeans cluster" version="1.0.0">
2 <description>an aligned matrix</description>
3 <command interpreter="sh">galaxyToolRunner.sh visualization.KMeans -i $input -k $K -1 $min -2 $max -o $output</command>
4 <inputs>
5 <param format="tabular" name="input" type="data" label="Aligned matrix" />
6 <param name="K" type="integer" value="10" label="Number of clusters" />
7 <param name="min" type="integer" value="1" label="Minimum column to use for clustering" />
8 <param name="max" type="integer" value="-1" label="Maximum column to use for clustering (-1 to end)" />
9 </inputs>
10 <outputs>
11 <data format="tabular" name="output" metadata="input" />
12 </outputs>
13 <tests>
14 </tests>
15
16 <help>
17
18 .. class:: warningmark
19
20 This tool requires tabular data in matrix2png format (with column AND row headers). For more information about the required format and usage instructions, see the matrix2png_ website.
21
22 .. _matrix2png: http://bioinformatics.ubc.ca/matrix2png/dataformat.html
23
24 .. class:: infomark
25
26 You can use the "Align values in a matrix" tool to create a matrix, then use this tool to cluster the matrix with k-means.
27
28 .. class:: infomark
29
30 **TIP:** You can use the **min** and **max** columns to cluster a large matrix based on a subset of the columns. For example, you could cluster a 4000x4000 matrix on columns 200-300 by setting min = 200 and max = 300. This will greatly increase the efficiency of distance calculations during the k-means EM, and also allows you to cluster based on specific regions, such as promoters or coding sequences.
31
32 -----
33
34 This tool will cluster the rows in an aligned matrix with KMeans_. The implementation builds upon the KMeansPlusPlusClusterer available in commons-math3_.
35
36 .. _KMeans: http://en.wikipedia.org/wiki/K-means_clustering
37
38 .. _commons-math3: http://commons.apache.org/math/
39
40 </help>
41 </tool>