Mercurial > repos > timpalpant > java_genomics_toolkit
view galaxy-conf/KMeans.xml @ 25:b43c420a6135 draft default tip
Incorporate fix: https://github.com/timpalpant/java-genomics-toolkit/commit/9a6c61b7c6b8d85a1cd3f595eed657a537b85dc9
author | timpalpant |
---|---|
date | Sat, 09 Feb 2019 14:02:24 -0500 |
parents | 9d56b5b85740 |
children |
line wrap: on
line source
<tool id="KMeans" name="KMeans cluster" version="1.0.0"> <description>an aligned matrix</description> <command interpreter="bash">galaxyToolRunner.sh visualization.KMeans -i $input -k $K -1 $min -2 $max -o $output</command> <inputs> <param format="tabular" name="input" type="data" label="Aligned matrix" /> <param name="K" type="integer" value="10" label="Number of clusters" /> <param name="min" type="integer" value="1" label="Minimum column to use for clustering" /> <param name="max" type="integer" value="-1" label="Maximum column to use for clustering (-1 to end)" /> </inputs> <outputs> <data format="tabular" name="output" metadata="input" /> </outputs> <tests> </tests> <help> .. class:: warningmark This tool requires tabular data in matrix2png format (with column AND row headers). For more information about the required format and usage instructions, see the matrix2png_ website. .. _matrix2png: http://bioinformatics.ubc.ca/matrix2png/dataformat.html .. class:: infomark You can use the "Align values in a matrix" tool to create a matrix, then use this tool to cluster the matrix with k-means. .. class:: infomark **TIP:** You can use the **min** and **max** columns to cluster a large matrix based on a subset of the columns. For example, you could cluster a 4000x4000 matrix on columns 200-300 by setting min = 200 and max = 300. This will greatly increase the efficiency of distance calculations during the k-means EM, and also allows you to cluster based on specific regions, such as promoters or coding sequences. ----- This tool will cluster the rows in an aligned matrix with KMeans_. The implementation builds upon the KMeansPlusPlusClusterer available in commons-math3_. .. _KMeans: http://en.wikipedia.org/wiki/K-means_clustering .. _commons-math3: http://commons.apache.org/math/ </help> </tool>