11
|
1 import sys, collections, itertools, os.path
|
|
2
|
|
3 if len( sys.argv ) != 3:
|
|
4 sys.stderr.write( "Script to prepare annotation for DEXSeq.\n\n" )
|
|
5 sys.stderr.write( "Usage: python %s <in.gtf> <out.gff>\n\n" % os.path.basename(sys.argv[0]) )
|
|
6 sys.stderr.write( "This script takes an annotation file in Ensembl GTF format\n" )
|
|
7 sys.stderr.write( "and outputs a 'flattened' annotation file suitable for use\n" )
|
|
8 sys.stderr.write( "with the count_in_exons.py script.\n" )
|
|
9 sys.exit(1)
|
|
10
|
|
11 try:
|
|
12 import HTSeq
|
|
13 except ImportError:
|
|
14 sys.stderr.write( "Could not import HTSeq. Please install the HTSeq Python framework\n" )
|
|
15 sys.stderr.write( "available from http://www-huber.embl.de/users/anders/HTSeq\n" )
|
|
16 sys.exit(1)
|
|
17
|
|
18 gtf_file = sys.argv[1]
|
|
19 out_file = sys.argv[2]
|
|
20
|
|
21 ## make sure that it can handle GFF files.
|
|
22 parent_child_map = dict()
|
|
23 for feature in HTSeq.GFF_Reader( gtf_file ):
|
|
24 if feature.type in ['mRNA',
|
|
25 'transcript',
|
|
26 'ncRNA',
|
|
27 'miRNA',
|
|
28 'pseudogenic_transcript',
|
|
29 'rRNA',
|
|
30 'snoRNA',
|
|
31 'snRNA',
|
|
32 'tRNA',
|
|
33 'scRNA']:
|
|
34 parent_child_map[feature.attr['ID']] = feature.attr['Parent']
|
|
35
|
|
36 # Step 1: Store all exons with their gene and transcript ID
|
|
37 # in a GenomicArrayOfSets
|
|
38
|
|
39 exons = HTSeq.GenomicArrayOfSets( "auto", stranded=True )
|
|
40 for f in HTSeq.GFF_Reader( gtf_file ):
|
|
41 if not f.type in ["exon", "pseudogenic_exon"]:
|
|
42 continue
|
|
43 if not f.attr.get('gene_id'):
|
|
44 f.attr['gene_id'] = parent_child_map[f.attr['Parent']]
|
|
45 f.attr['transcript_id'] = f.attr['Parent']
|
|
46 f.attr['gene_id'] = f.attr['gene_id'].replace( ":", "_" )
|
|
47 exons[f.iv] += ( f.attr['gene_id'], f.attr['transcript_id'] )
|
|
48
|
|
49 # Step 2: Form sets of overlapping genes
|
|
50
|
|
51 # We produce the dict 'gene_sets', whose values are sets of gene IDs. Each set
|
|
52 # contains IDs of genes that overlap, i.e., share bases (on the same strand).
|
|
53 # The keys of 'gene_sets' are the IDs of all genes, and each key refers to
|
|
54 # the set that contains the gene.
|
|
55 # Each gene set forms an 'aggregate gene'.
|
|
56
|
|
57 gene_sets = collections.defaultdict( lambda: set() )
|
|
58 for iv, s in exons.steps():
|
|
59 # For each step, make a set, 'full_set' of all the gene IDs occuring
|
|
60 # in the present step, and also add all those gene IDs, whch have been
|
|
61 # seen earlier to co-occur with each of the currently present gene IDs.
|
|
62 full_set = set()
|
|
63 for gene_id, transcript_id in s:
|
|
64 full_set.add( gene_id )
|
|
65 full_set |= gene_sets[ gene_id ]
|
|
66 # Make sure that all genes that are now in full_set get associated
|
|
67 # with full_set, i.e., get to know about their new partners
|
|
68 for gene_id in full_set:
|
|
69 assert gene_sets[ gene_id ] <= full_set
|
|
70 gene_sets[ gene_id ] = full_set
|
|
71
|
|
72
|
|
73 # Step 3: Go through the steps again to get the exonic sections. Each step
|
|
74 # becomes an 'exonic part'. The exonic part is associated with an
|
|
75 # aggregate gene, i.e., a gene set as determined in the previous step,
|
|
76 # and a transcript set, containing all transcripts that occur in the step.
|
|
77 # The results are stored in the dict 'aggregates', which contains, for each
|
|
78 # aggregate ID, a list of all its exonic_part features.
|
|
79
|
|
80 aggregates = collections.defaultdict( lambda: list() )
|
|
81 for iv, s in exons.steps( ):
|
|
82 # Skip empty steps
|
|
83 if len(s) == 0:
|
|
84 continue
|
|
85 # Take one of the gene IDs, find the others via gene sets, and
|
|
86 # form the aggregate ID from all of them
|
|
87 gene_id = list(s)[0][0]
|
|
88 assert set( gene_id for gene_id, transcript_id in s ) <= gene_sets[ gene_id ]
|
|
89 aggregate_id = '+'.join( gene_sets[ gene_id ] )
|
|
90 # Make the feature and store it in 'aggregates'
|
|
91 f = HTSeq.GenomicFeature( aggregate_id, "exonic_part", iv )
|
|
92 f.source = os.path.basename( sys.argv[1] )
|
|
93 f.attr = {}
|
|
94 f.attr[ 'gene_id' ] = aggregate_id
|
|
95 transcript_set = set( ( transcript_id for gene_id, transcript_id in s ) )
|
|
96 f.attr[ 'transcripts' ] = '+'.join( transcript_set )
|
|
97 aggregates[ aggregate_id ].append( f )
|
|
98
|
|
99
|
|
100 # Step 4: For each aggregate, number the exonic parts
|
|
101
|
|
102 aggregate_features = []
|
|
103 for l in aggregates.values():
|
|
104 for i in xrange( len(l)-1 ):
|
|
105 assert l[i].name == l[i+1].name, str(l[i+1]) + " has wrong name"
|
|
106 assert l[i].iv.end <= l[i+1].iv.start, str(l[i+1]) + " starts too early"
|
|
107 if l[i].iv.chrom != l[i+1].iv.chrom:
|
|
108 raise ValueError, "Same name found on two chromosomes: %s, %s" % ( str(l[i]), str(l[i+1]) )
|
|
109 if l[i].iv.strand != l[i+1].iv.strand:
|
|
110 raise ValueError, "Same name found on two strands: %s, %s" % ( str(l[i]), str(l[i+1]) )
|
|
111 aggr_feat = HTSeq.GenomicFeature( l[0].name, "aggregate_gene",
|
|
112 HTSeq.GenomicInterval( l[0].iv.chrom, l[0].iv.start,
|
|
113 l[-1].iv.end, l[0].iv.strand ) )
|
|
114 aggr_feat.source = os.path.basename( sys.argv[1] )
|
|
115 aggr_feat.attr = { 'gene_id': aggr_feat.name }
|
|
116 for i in xrange( len(l) ):
|
|
117 l[i].attr['exonic_part_number'] = "%03d" % ( i+1 )
|
|
118 aggregate_features.append( aggr_feat )
|
|
119
|
|
120
|
|
121 # Step 5: Sort the aggregates, then write everything out
|
|
122
|
|
123 aggregate_features.sort( key = lambda f: ( f.iv.chrom, f.iv.start ) )
|
|
124
|
|
125 fout = open( out_file, "w" )
|
|
126 for aggr_feat in aggregate_features:
|
|
127 fout.write( aggr_feat.get_gff_line() )
|
|
128 for f in aggregates[ aggr_feat.name ]:
|
|
129 fout.write( f.get_gff_line() )
|
|
130
|
|
131 fout.close()
|