Mercurial > repos > vipints > fml_mergeloci
comparison fml_gff_groomer/scripts/gff_loci_merge.py @ 0:79726c328621 default tip
Migrated tool version 1.0.0 from old tool shed archive to new tool shed repository
author | vipints |
---|---|
date | Tue, 07 Jun 2011 17:29:24 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:79726c328621 |
---|---|
1 #!/usr/bin/env python | |
2 # | |
3 # This program is free software; you can redistribute it and/or modify | |
4 # it under the terms of the GNU General Public License as published by | |
5 # the Free Software Foundation; either version 3 of the License, or | |
6 # (at your option) any later version. | |
7 # | |
8 # Written (W) 2010 Vipin T Sreedharan, Friedrich Miescher Laboratory of the Max Planck Society | |
9 # Copyright (C) 2010 Friedrich Miescher Laboratory of the Max Planck Society | |
10 # | |
11 # Description : to merge same transcripts in single loci and define as an alternative spliced form for the gene. | |
12 | |
13 def display_content(final_dict): | |
14 """displaying the summary from GFF file""" | |
15 | |
16 print "\tUnique combination of Source(s), Feature type(s) and corresponding count:" | |
17 for sftype, cnt in sorted(final_dict['gff_source_type'].items()): | |
18 if sftype[1] == 'gene':print '\t' + str(cnt) + '\t' + str(sftype[0]) + ', '+ str(sftype[1]) | |
19 | |
20 def available_limits(gff_file): | |
21 """Figure out the available feature types from the given GFF file""" | |
22 | |
23 gff_handle = open(gff_file, 'rU') | |
24 filter_info = dict(gff_id = [0], gff_source_type = [1, 2], | |
25 gff_source = [1], gff_type = [2]) | |
26 cur_limits = dict() | |
27 for filter_key in filter_info.keys(): | |
28 cur_limits[filter_key] = collections.defaultdict(int) | |
29 for line in gff_handle: | |
30 if line.strip('\n\r')[0] != "#": | |
31 parts = [p.strip() for p in line.split('\t')] | |
32 if len(parts) == 1 and re.search(r'\w+', parts[0]):continue ## GFF files with FASTA sequence together | |
33 assert len(parts) == 9, line | |
34 for filter_key, cur_indexes in filter_info.items(): | |
35 cur_id = tuple([parts[i] for i in cur_indexes]) | |
36 cur_limits[filter_key][cur_id] += 1 | |
37 # get rid of the default dicts | |
38 gff_handle.close() | |
39 final_dict = dict() | |
40 for key, value_dict in cur_limits.items(): | |
41 if len(key) == 1:key = key[0] | |
42 final_dict[key] = dict(value_dict) | |
43 return final_dict | |
44 | |
45 def GFFWriter(merged_info, genes, transcripts, exons, utr5, cds, utr3, out_file): | |
46 """Write GFF3 file with merged feature description""" | |
47 | |
48 out_fh = open(out_file, 'w') | |
49 for ginfo, regions in merged_info.items(): | |
50 gene_cnt = 1 | |
51 for interval, features in sorted(regions.items()):# master gene feature | |
52 out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tgene\t' + str(interval[0]) + '\t' + str(interval[1]) + '\t.\t' + ginfo[2] + '\t.\tID=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + ';Name=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + '\n') | |
53 for geneid in features:# corresponding transcript info | |
54 if geneid in transcripts: | |
55 for tinfo in transcripts[geneid]:# transcript feature line | |
56 out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\t' + tinfo['type'] + '\t' + str(tinfo['start']) + '\t' + str(tinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tID=' + tinfo['ID']+ ';Parent=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + '\n') | |
57 if tinfo['ID'] in utr5:# check for 5 prime UTR | |
58 for u5info in utr5[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tfive_prime_UTR\t' + str(u5info['start']) + '\t' + str(u5info['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') | |
59 if tinfo['ID'] in cds:# check for CDS | |
60 for cdsinfo in cds[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tCDS\t' + str(cdsinfo['start']) + '\t' + str(cdsinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') | |
61 if tinfo['ID'] in utr3:# check for 3 prime UTR | |
62 for u3info in utr3[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tthree_prime_UTR\t' + str(u3info['start']) + '\t' + str(u3info['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') | |
63 if tinfo['ID'] in exons:# check for exons | |
64 for exinfo in exons[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\texon\t' + str(exinfo['start']) + '\t' + str(exinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') | |
65 gene_cnt += 1 | |
66 out_fh.close() | |
67 | |
68 def UniqLoci(genes, transcripts, exons): | |
69 """determine unique location where features annotated multiple times""" | |
70 | |
71 uniq_loci = dict() | |
72 for gid, parts in genes.items(): | |
73 gene_info = (parts['chr'], parts['source'], parts['strand']) | |
74 if gene_info in uniq_loci:## same contig, orientation, source: look for merging transcripts based on the nearby location | |
75 if (int(parts['start']), int(parts['stop'])) in uniq_loci[gene_info].keys(): ## similar transcripts will catch here (start and stop are same may be exon, CDS or intron content may vary) | |
76 uniq_loci[gene_info][(int(parts['start']), int(parts['stop']))].append(gid) | |
77 else: # heuristic approach to include closely related region on a single master loci. | |
78 got_a_range = 0 | |
79 for floc in uniq_loci[gene_info].keys():# look whether it lies closely to any intervel which is already defined | |
80 if (floc[1]-parts['start']) < 150 or (parts['stop']-floc[0]) < 150:continue ## TODO boundary spanning length in same orientation for genes of each species will be great. | |
81 if floc[0] <= parts['start'] and parts['start'] < floc[1]: # the start of the new candidate is inside of any of the already defined interval ? | |
82 non_coding = 0 | |
83 try: # check for small transcript whether they belong to a existing one or a new non-coding candidate. | |
84 if len(transcripts[gid]) == 1: | |
85 if len(exons[transcripts[gid][0]['ID']]) == 1:non_coding = 1 | |
86 if non_coding == 0: | |
87 if parts['stop'] > floc[1]:# making global gene coordinate from individual transcript model | |
88 entries = uniq_loci[gene_info][floc] | |
89 del uniq_loci[gene_info][floc] # remove the existing interval, here we got a longer downstream position from the candidate | |
90 entries.append(gid) | |
91 uniq_loci[gene_info][(floc[0], parts['stop'])] = entries | |
92 else: | |
93 uniq_loci[gene_info][floc].append(gid) | |
94 else:# create a new interval for non-coding type entry | |
95 uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] | |
96 got_a_range = 1 | |
97 break | |
98 except: # dont have any transcripts or exons defined. | |
99 break | |
100 elif floc[0] < parts['stop'] and parts['stop'] <= floc[1]: # the stop of the new candidate is inside of any of the pre-defined interval ? the candidate seems to be from more upstream | |
101 non_coding = 0 | |
102 try: | |
103 if len(transcripts[gid]) == 1: | |
104 if len(exons[transcripts[gid][0]['ID']]) == 1:non_coding = 1 | |
105 if non_coding == 0: | |
106 entries = uniq_loci[gene_info][floc] | |
107 del uniq_loci[gene_info][floc] # remove the existing interval, here we got a upstream position from which the candidate transcribing | |
108 entries.append(gid) | |
109 uniq_loci[gene_info][(int(parts['start']), floc[1])] = entries | |
110 else: # create a new interval for non-coding type entry | |
111 uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] | |
112 got_a_range = 1 | |
113 break | |
114 except: | |
115 break | |
116 elif floc[0] > parts['start'] and floc[1] < parts['stop']: # whether the whole feature floc region (--) resides in the candidate location (----------) ? | |
117 non_coding = 0 # here the candidate seems to be longer than the pre-defined interval, check all entries from the pre-defined interval whether it is a small region, any chance as non-coding. | |
118 try: | |
119 for features in uniq_loci[gene_info][floc]: | |
120 if len(transcripts[features]) == 1: | |
121 if len(exons[transcripts[features][0]['ID']]) == 1:non_coding = 1 | |
122 if non_coding == 1: # create a new interval for non coding | |
123 uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] | |
124 else: # append the existing transcript cluster, here change the interval position based on the candidate location | |
125 entries = uniq_loci[gene_info][floc] | |
126 del uniq_loci[gene_info][floc] # remove the existing interval, here we got a longer upstream and downstream region. | |
127 entries.append(gid) | |
128 uniq_loci[gene_info][(parts['start'], parts['stop'])] = entries | |
129 got_a_range = 1 | |
130 break | |
131 except: | |
132 break | |
133 ## or create a new interval ?? | |
134 if got_a_range == 0:uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] | |
135 else: | |
136 uniq_loci[gene_info] = {(int(parts['start']), int(parts['stop'])): [gid]} | |
137 | |
138 return uniq_loci | |
139 | |
140 def ParseGFF(gff_file): | |
141 """feature extraction from provided GFF file""" | |
142 | |
143 gff_handle = open(gff_file, 'rU') | |
144 genes, transcripts, exons, utr5, cds, utr3 = dict(), dict(), dict(), dict(), dict(), dict() | |
145 for gff_line in gff_handle: | |
146 parts = gff_line.strip('\n\r').split('\t') | |
147 if gff_line[0] == '#' or gff_line[0] == '>':continue | |
148 if len(parts) == 1:continue ## Some centers in the world create GFF files with FASTA sequence together | |
149 if len(parts) != 9:sys.stdout.write('Warning: Found invalid GFF line\n' + gff_line.strip('\n\r') + '\n');continue | |
150 if parts[3] == '' or parts[4] == '':sys.stdout.write('Warning: Found missing coordinate in GFF line\n' + gff_line.strip('\n\r') + '\n');continue | |
151 if parts[2] == 'gene': | |
152 gene_info = dict() | |
153 gene_info['start'] = int(parts[3]) | |
154 gene_info['stop'] = int(parts[4]) | |
155 gene_info['chr'] = parts[0] | |
156 gene_info['source'] = parts[1] | |
157 gene_info['strand'] = parts[6] | |
158 gid = '' | |
159 for attr in parts[-1].split(';'): | |
160 if attr == '':continue ## GFF line may end with a ';' symbol | |
161 attr = attr.split('=') | |
162 if attr[0] == 'ID':gid=attr[1];continue | |
163 gene_info[attr[0]] = attr[1] | |
164 if gid != '': genes[gid] = gene_info | |
165 if parts[2] == 'mRNA' or parts[2] == 'transcript' or parts[2] == 'ncRNA' or parts[2] == 'tRNA' or parts[2] == 'snRNA' or parts[2] == 'scRNA' or parts[2] == 'snoRNA' or parts[2] == 'snlRNA' or parts[2] == 'rRNA' or parts[2] == 'miRNA': | |
166 mrna_info = dict() | |
167 mrna_info['start'] = int(parts[3]) | |
168 mrna_info['stop'] = int(parts[4]) | |
169 mrna_info['chr'] = parts[0] | |
170 mrna_info['strand'] = parts[6] | |
171 mrna_info['type'] = parts[2] | |
172 gid = '' | |
173 for attr in parts[-1].split(';'): | |
174 if attr == '':continue ## GFF line may end with a ';' symbol | |
175 attr = attr.split('=') | |
176 if attr[0] == 'Parent':gid=attr[1];continue | |
177 mrna_info[attr[0]] = attr[1] | |
178 if gid in transcripts: | |
179 transcripts[gid].append(mrna_info) | |
180 else: | |
181 transcripts[gid] = [mrna_info] | |
182 if parts[2] == 'exon': | |
183 exon_info = dict() | |
184 exon_info['start'] = int(parts[3]) | |
185 exon_info['stop'] = int(parts[4]) | |
186 exon_info['chr'] = parts[0] | |
187 exon_info['strand'] = parts[6] | |
188 tid = '' | |
189 for attr in parts[-1].split(';'): | |
190 if attr == '':continue ## GFF line may end with a ';' symbol | |
191 attr = attr.split('=') | |
192 if attr[0] == 'Parent':tid=attr[1];continue | |
193 exon_info[attr[0]] = attr[1] | |
194 if tid in exons: | |
195 exons[tid].append(exon_info) | |
196 else: | |
197 exons[tid] = [exon_info] | |
198 if parts[2] == 'five_prime_UTR': | |
199 utr5_info = dict() | |
200 utr5_info['start'] = int(parts[3]) | |
201 utr5_info['stop'] = int(parts[4]) | |
202 utr5_info['chr'] = parts[0] | |
203 utr5_info['strand'] = parts[6] | |
204 tid = '' | |
205 for attr in parts[-1].split(';'): | |
206 if attr == '':continue ## GFF line may end with a ';' symbol | |
207 attr = attr.split('=') | |
208 if attr[0] == 'Parent':tid=attr[1];continue | |
209 utr5_info[attr[0]] = attr[1] | |
210 if tid in utr5: | |
211 utr5[tid].append(utr5_info) | |
212 else: | |
213 utr5[tid] = [utr5_info] | |
214 if parts[2] == 'CDS': | |
215 cds_info = dict() | |
216 cds_info['start'] = int(parts[3]) | |
217 cds_info['stop'] = int(parts[4]) | |
218 cds_info['chr'] = parts[0] | |
219 cds_info['strand'] = parts[6] | |
220 tid = '' | |
221 for attr in parts[-1].split(';'): | |
222 if attr == '':continue | |
223 attr = attr.split('=') | |
224 if attr[0] == 'Parent':tid=attr[1];continue | |
225 cds_info[attr[0]] = attr[1] | |
226 if tid in cds: | |
227 cds[tid].append(cds_info) | |
228 else: | |
229 cds[tid] = [cds_info] | |
230 if parts[2] == 'three_prime_UTR': | |
231 utr3_info = dict() | |
232 utr3_info['start'] = int(parts[3]) | |
233 utr3_info['stop'] = int(parts[4]) | |
234 utr3_info['chr'] = parts[0] | |
235 utr3_info['strand'] = parts[6] | |
236 tid = '' | |
237 for attr in parts[-1].split(';'): | |
238 if attr == '':continue | |
239 attr = attr.split('=') | |
240 if attr[0] == 'Parent':tid=attr[1];continue | |
241 utr3_info[attr[0]] = attr[1] | |
242 if tid in utr3: | |
243 utr3[tid].append(utr3_info) | |
244 else: | |
245 utr3[tid] = [utr3_info] | |
246 gff_handle.close() | |
247 return genes, transcripts, exons, utr5, cds, utr3 | |
248 | |
249 import re, sys | |
250 import time | |
251 import collections | |
252 | |
253 if __name__=='__main__': | |
254 | |
255 stime = time.asctime( time.localtime(time.time()) ) | |
256 print '-------------------------------------------------------' | |
257 print 'MergeLoci started on ' + stime | |
258 print '-------------------------------------------------------' | |
259 try: | |
260 gff_file = sys.argv[1] | |
261 out_file = sys.argv[2] | |
262 except: | |
263 sys.stderr.write("Missing GFF3 file, result file. terminating...\n") | |
264 sys.stderr.write("USAGE: gff_loci_merge.py <gff file> <result file>\n") | |
265 sys.exit(-1) | |
266 print '--------' | |
267 print 'Level: 1- ' + 'Reading GFF file: ' + re.sub(r'/home/galaxy/galaxy-2.1.2009', r'GALAXYDIR', gff_file) | |
268 print '--------' | |
269 print '--------' | |
270 print 'Level: 2- ' + 'BEFORE processing, Merging feature distribution in GFF file' | |
271 print '--------' | |
272 # initial feature distribution in file | |
273 final_dict = available_limits(gff_file) | |
274 display_content(final_dict) | |
275 # determine the whole content from GFF file | |
276 genes, transcripts, exons, utr5, cds, utr3 = ParseGFF(gff_file) | |
277 print '--------' | |
278 print 'Level: 3- ' + 'Start merging feature(s) from similar locations...' | |
279 print '--------' | |
280 # determine the same gene loci on specific chromosome based on the same source | |
281 merged_regions = UniqLoci(genes, transcripts, exons) | |
282 print '\tDone.' | |
283 print '--------' | |
284 print 'Level: 4- ' + 'Writing merged feature annotation to GFF format...' | |
285 print '--------' | |
286 # write new GFF file with merged loci information for gene feature | |
287 GFFWriter(merged_regions, genes, transcripts, exons, utr5, cds, utr3, out_file) | |
288 print '\tDone.' | |
289 # after processing display the feature distribution in the result file | |
290 print '--------' | |
291 print 'Level: 5- ' + 'Merged feature(s) summary from GFF file' | |
292 print '--------' | |
293 final_dict = available_limits(out_file) | |
294 display_content(final_dict) | |
295 print | |
296 print '\tMerged result file: ' + re.sub(r'/home/galaxy/galaxy-2.1.2009', r'GALAXYDIR', out_file) | |
297 stime = time.asctime( time.localtime(time.time()) ) | |
298 print '-------------------------------------------------------' | |
299 print 'MergeLoci finished at ' + stime | |
300 print '-------------------------------------------------------' |