Mercurial > repos > vipints > fml_mergeloci
view fml_gff_groomer/scripts/gff_loci_merge.py @ 0:79726c328621 default tip
Migrated tool version 1.0.0 from old tool shed archive to new tool shed repository
author | vipints |
---|---|
date | Tue, 07 Jun 2011 17:29:24 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Written (W) 2010 Vipin T Sreedharan, Friedrich Miescher Laboratory of the Max Planck Society # Copyright (C) 2010 Friedrich Miescher Laboratory of the Max Planck Society # # Description : to merge same transcripts in single loci and define as an alternative spliced form for the gene. def display_content(final_dict): """displaying the summary from GFF file""" print "\tUnique combination of Source(s), Feature type(s) and corresponding count:" for sftype, cnt in sorted(final_dict['gff_source_type'].items()): if sftype[1] == 'gene':print '\t' + str(cnt) + '\t' + str(sftype[0]) + ', '+ str(sftype[1]) def available_limits(gff_file): """Figure out the available feature types from the given GFF file""" gff_handle = open(gff_file, 'rU') filter_info = dict(gff_id = [0], gff_source_type = [1, 2], gff_source = [1], gff_type = [2]) cur_limits = dict() for filter_key in filter_info.keys(): cur_limits[filter_key] = collections.defaultdict(int) for line in gff_handle: if line.strip('\n\r')[0] != "#": parts = [p.strip() for p in line.split('\t')] if len(parts) == 1 and re.search(r'\w+', parts[0]):continue ## GFF files with FASTA sequence together assert len(parts) == 9, line for filter_key, cur_indexes in filter_info.items(): cur_id = tuple([parts[i] for i in cur_indexes]) cur_limits[filter_key][cur_id] += 1 # get rid of the default dicts gff_handle.close() final_dict = dict() for key, value_dict in cur_limits.items(): if len(key) == 1:key = key[0] final_dict[key] = dict(value_dict) return final_dict def GFFWriter(merged_info, genes, transcripts, exons, utr5, cds, utr3, out_file): """Write GFF3 file with merged feature description""" out_fh = open(out_file, 'w') for ginfo, regions in merged_info.items(): gene_cnt = 1 for interval, features in sorted(regions.items()):# master gene feature out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tgene\t' + str(interval[0]) + '\t' + str(interval[1]) + '\t.\t' + ginfo[2] + '\t.\tID=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + ';Name=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + '\n') for geneid in features:# corresponding transcript info if geneid in transcripts: for tinfo in transcripts[geneid]:# transcript feature line out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\t' + tinfo['type'] + '\t' + str(tinfo['start']) + '\t' + str(tinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tID=' + tinfo['ID']+ ';Parent=Gene_' + ginfo[0] + '_' + str(gene_cnt).zfill(5) + '\n') if tinfo['ID'] in utr5:# check for 5 prime UTR for u5info in utr5[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tfive_prime_UTR\t' + str(u5info['start']) + '\t' + str(u5info['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') if tinfo['ID'] in cds:# check for CDS for cdsinfo in cds[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tCDS\t' + str(cdsinfo['start']) + '\t' + str(cdsinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') if tinfo['ID'] in utr3:# check for 3 prime UTR for u3info in utr3[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\tthree_prime_UTR\t' + str(u3info['start']) + '\t' + str(u3info['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') if tinfo['ID'] in exons:# check for exons for exinfo in exons[tinfo['ID']]:out_fh.write(ginfo[0] + '\t' + ginfo[1] + '\texon\t' + str(exinfo['start']) + '\t' + str(exinfo['stop']) + '\t.\t' + ginfo[2] + '\t.\tParent=' + tinfo['ID'] + '\n') gene_cnt += 1 out_fh.close() def UniqLoci(genes, transcripts, exons): """determine unique location where features annotated multiple times""" uniq_loci = dict() for gid, parts in genes.items(): gene_info = (parts['chr'], parts['source'], parts['strand']) if gene_info in uniq_loci:## same contig, orientation, source: look for merging transcripts based on the nearby location if (int(parts['start']), int(parts['stop'])) in uniq_loci[gene_info].keys(): ## similar transcripts will catch here (start and stop are same may be exon, CDS or intron content may vary) uniq_loci[gene_info][(int(parts['start']), int(parts['stop']))].append(gid) else: # heuristic approach to include closely related region on a single master loci. got_a_range = 0 for floc in uniq_loci[gene_info].keys():# look whether it lies closely to any intervel which is already defined if (floc[1]-parts['start']) < 150 or (parts['stop']-floc[0]) < 150:continue ## TODO boundary spanning length in same orientation for genes of each species will be great. if floc[0] <= parts['start'] and parts['start'] < floc[1]: # the start of the new candidate is inside of any of the already defined interval ? non_coding = 0 try: # check for small transcript whether they belong to a existing one or a new non-coding candidate. if len(transcripts[gid]) == 1: if len(exons[transcripts[gid][0]['ID']]) == 1:non_coding = 1 if non_coding == 0: if parts['stop'] > floc[1]:# making global gene coordinate from individual transcript model entries = uniq_loci[gene_info][floc] del uniq_loci[gene_info][floc] # remove the existing interval, here we got a longer downstream position from the candidate entries.append(gid) uniq_loci[gene_info][(floc[0], parts['stop'])] = entries else: uniq_loci[gene_info][floc].append(gid) else:# create a new interval for non-coding type entry uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] got_a_range = 1 break except: # dont have any transcripts or exons defined. break elif floc[0] < parts['stop'] and parts['stop'] <= floc[1]: # the stop of the new candidate is inside of any of the pre-defined interval ? the candidate seems to be from more upstream non_coding = 0 try: if len(transcripts[gid]) == 1: if len(exons[transcripts[gid][0]['ID']]) == 1:non_coding = 1 if non_coding == 0: entries = uniq_loci[gene_info][floc] del uniq_loci[gene_info][floc] # remove the existing interval, here we got a upstream position from which the candidate transcribing entries.append(gid) uniq_loci[gene_info][(int(parts['start']), floc[1])] = entries else: # create a new interval for non-coding type entry uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] got_a_range = 1 break except: break elif floc[0] > parts['start'] and floc[1] < parts['stop']: # whether the whole feature floc region (--) resides in the candidate location (----------) ? non_coding = 0 # here the candidate seems to be longer than the pre-defined interval, check all entries from the pre-defined interval whether it is a small region, any chance as non-coding. try: for features in uniq_loci[gene_info][floc]: if len(transcripts[features]) == 1: if len(exons[transcripts[features][0]['ID']]) == 1:non_coding = 1 if non_coding == 1: # create a new interval for non coding uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] else: # append the existing transcript cluster, here change the interval position based on the candidate location entries = uniq_loci[gene_info][floc] del uniq_loci[gene_info][floc] # remove the existing interval, here we got a longer upstream and downstream region. entries.append(gid) uniq_loci[gene_info][(parts['start'], parts['stop'])] = entries got_a_range = 1 break except: break ## or create a new interval ?? if got_a_range == 0:uniq_loci[gene_info][(parts['start'], parts['stop'])] = [gid] else: uniq_loci[gene_info] = {(int(parts['start']), int(parts['stop'])): [gid]} return uniq_loci def ParseGFF(gff_file): """feature extraction from provided GFF file""" gff_handle = open(gff_file, 'rU') genes, transcripts, exons, utr5, cds, utr3 = dict(), dict(), dict(), dict(), dict(), dict() for gff_line in gff_handle: parts = gff_line.strip('\n\r').split('\t') if gff_line[0] == '#' or gff_line[0] == '>':continue if len(parts) == 1:continue ## Some centers in the world create GFF files with FASTA sequence together if len(parts) != 9:sys.stdout.write('Warning: Found invalid GFF line\n' + gff_line.strip('\n\r') + '\n');continue if parts[3] == '' or parts[4] == '':sys.stdout.write('Warning: Found missing coordinate in GFF line\n' + gff_line.strip('\n\r') + '\n');continue if parts[2] == 'gene': gene_info = dict() gene_info['start'] = int(parts[3]) gene_info['stop'] = int(parts[4]) gene_info['chr'] = parts[0] gene_info['source'] = parts[1] gene_info['strand'] = parts[6] gid = '' for attr in parts[-1].split(';'): if attr == '':continue ## GFF line may end with a ';' symbol attr = attr.split('=') if attr[0] == 'ID':gid=attr[1];continue gene_info[attr[0]] = attr[1] if gid != '': genes[gid] = gene_info if parts[2] == 'mRNA' or parts[2] == 'transcript' or parts[2] == 'ncRNA' or parts[2] == 'tRNA' or parts[2] == 'snRNA' or parts[2] == 'scRNA' or parts[2] == 'snoRNA' or parts[2] == 'snlRNA' or parts[2] == 'rRNA' or parts[2] == 'miRNA': mrna_info = dict() mrna_info['start'] = int(parts[3]) mrna_info['stop'] = int(parts[4]) mrna_info['chr'] = parts[0] mrna_info['strand'] = parts[6] mrna_info['type'] = parts[2] gid = '' for attr in parts[-1].split(';'): if attr == '':continue ## GFF line may end with a ';' symbol attr = attr.split('=') if attr[0] == 'Parent':gid=attr[1];continue mrna_info[attr[0]] = attr[1] if gid in transcripts: transcripts[gid].append(mrna_info) else: transcripts[gid] = [mrna_info] if parts[2] == 'exon': exon_info = dict() exon_info['start'] = int(parts[3]) exon_info['stop'] = int(parts[4]) exon_info['chr'] = parts[0] exon_info['strand'] = parts[6] tid = '' for attr in parts[-1].split(';'): if attr == '':continue ## GFF line may end with a ';' symbol attr = attr.split('=') if attr[0] == 'Parent':tid=attr[1];continue exon_info[attr[0]] = attr[1] if tid in exons: exons[tid].append(exon_info) else: exons[tid] = [exon_info] if parts[2] == 'five_prime_UTR': utr5_info = dict() utr5_info['start'] = int(parts[3]) utr5_info['stop'] = int(parts[4]) utr5_info['chr'] = parts[0] utr5_info['strand'] = parts[6] tid = '' for attr in parts[-1].split(';'): if attr == '':continue ## GFF line may end with a ';' symbol attr = attr.split('=') if attr[0] == 'Parent':tid=attr[1];continue utr5_info[attr[0]] = attr[1] if tid in utr5: utr5[tid].append(utr5_info) else: utr5[tid] = [utr5_info] if parts[2] == 'CDS': cds_info = dict() cds_info['start'] = int(parts[3]) cds_info['stop'] = int(parts[4]) cds_info['chr'] = parts[0] cds_info['strand'] = parts[6] tid = '' for attr in parts[-1].split(';'): if attr == '':continue attr = attr.split('=') if attr[0] == 'Parent':tid=attr[1];continue cds_info[attr[0]] = attr[1] if tid in cds: cds[tid].append(cds_info) else: cds[tid] = [cds_info] if parts[2] == 'three_prime_UTR': utr3_info = dict() utr3_info['start'] = int(parts[3]) utr3_info['stop'] = int(parts[4]) utr3_info['chr'] = parts[0] utr3_info['strand'] = parts[6] tid = '' for attr in parts[-1].split(';'): if attr == '':continue attr = attr.split('=') if attr[0] == 'Parent':tid=attr[1];continue utr3_info[attr[0]] = attr[1] if tid in utr3: utr3[tid].append(utr3_info) else: utr3[tid] = [utr3_info] gff_handle.close() return genes, transcripts, exons, utr5, cds, utr3 import re, sys import time import collections if __name__=='__main__': stime = time.asctime( time.localtime(time.time()) ) print '-------------------------------------------------------' print 'MergeLoci started on ' + stime print '-------------------------------------------------------' try: gff_file = sys.argv[1] out_file = sys.argv[2] except: sys.stderr.write("Missing GFF3 file, result file. terminating...\n") sys.stderr.write("USAGE: gff_loci_merge.py <gff file> <result file>\n") sys.exit(-1) print '--------' print 'Level: 1- ' + 'Reading GFF file: ' + re.sub(r'/home/galaxy/galaxy-2.1.2009', r'GALAXYDIR', gff_file) print '--------' print '--------' print 'Level: 2- ' + 'BEFORE processing, Merging feature distribution in GFF file' print '--------' # initial feature distribution in file final_dict = available_limits(gff_file) display_content(final_dict) # determine the whole content from GFF file genes, transcripts, exons, utr5, cds, utr3 = ParseGFF(gff_file) print '--------' print 'Level: 3- ' + 'Start merging feature(s) from similar locations...' print '--------' # determine the same gene loci on specific chromosome based on the same source merged_regions = UniqLoci(genes, transcripts, exons) print '\tDone.' print '--------' print 'Level: 4- ' + 'Writing merged feature annotation to GFF format...' print '--------' # write new GFF file with merged loci information for gene feature GFFWriter(merged_regions, genes, transcripts, exons, utr5, cds, utr3, out_file) print '\tDone.' # after processing display the feature distribution in the result file print '--------' print 'Level: 5- ' + 'Merged feature(s) summary from GFF file' print '--------' final_dict = available_limits(out_file) display_content(final_dict) print print '\tMerged result file: ' + re.sub(r'/home/galaxy/galaxy-2.1.2009', r'GALAXYDIR', out_file) stime = time.asctime( time.localtime(time.time()) ) print '-------------------------------------------------------' print 'MergeLoci finished at ' + stime print '-------------------------------------------------------'