Mercurial > repos > xuebing > sharplabtool
diff tools/regVariation/linear_regression.py @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tools/regVariation/linear_regression.py Fri Mar 09 19:37:19 2012 -0500 @@ -0,0 +1,147 @@ +#!/usr/bin/env python + +from galaxy import eggs +import sys, string +from rpy import * +import numpy + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit() + +infile = sys.argv[1] +y_col = int(sys.argv[2])-1 +x_cols = sys.argv[3].split(',') +outfile = sys.argv[4] +outfile2 = sys.argv[5] + +print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) +fout = open(outfile,'w') +elems = [] +for i, line in enumerate( file ( infile )): + line = line.rstrip('\r\n') + if len( line )>0 and not line.startswith( '#' ): + elems = line.split( '\t' ) + break + if i == 30: + break # Hopefully we'll never get here... + +if len( elems )<1: + stop_err( "The data in your input dataset is either missing or not formatted properly." ) + +y_vals = [] +x_vals = [] + +for k,col in enumerate(x_cols): + x_cols[k] = int(col)-1 + x_vals.append([]) + +NA = 'NA' +for ind,line in enumerate( file( infile )): + if line and not line.startswith( '#' ): + try: + fields = line.split("\t") + try: + yval = float(fields[y_col]) + except: + yval = r('NA') + y_vals.append(yval) + for k,col in enumerate(x_cols): + try: + xval = float(fields[col]) + except: + xval = r('NA') + x_vals[k].append(xval) + except: + pass + +x_vals1 = numpy.asarray(x_vals).transpose() + +dat= r.list(x=array(x_vals1), y=y_vals) + +set_default_mode(NO_CONVERSION) +try: + linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) +except RException, rex: + stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") +set_default_mode(BASIC_CONVERSION) + +coeffs=linear_model.as_py()['coefficients'] +yintercept= coeffs['(Intercept)'] +summary = r.summary(linear_model) + +co = summary.get('coefficients', 'NA') +""" +if len(co) != len(x_vals)+1: + stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") +""" + +try: + yintercept = r.round(float(yintercept), digits=10) + pvaly = r.round(float(co[0][3]), digits=10) +except: + pass + +print >>fout, "Y-intercept\t%s" %(yintercept) +print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) + +if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable + try: + slope = r.round(float(coeffs['x']), digits=10) + except: + slope = 'NA' + try: + pval = r.round(float(co[1][3]), digits=10) + except: + pval = 'NA' + print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) + print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) +else: #Multiple regression case with >1 predictors + ind=1 + while ind < len(coeffs.keys()): + try: + slope = r.round(float(coeffs['x'+str(ind)]), digits=10) + except: + slope = 'NA' + print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) + try: + pval = r.round(float(co[ind][3]), digits=10) + except: + pval = 'NA' + print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) + ind+=1 + +rsq = summary.get('r.squared','NA') +adjrsq = summary.get('adj.r.squared','NA') +fstat = summary.get('fstatistic','NA') +sigma = summary.get('sigma','NA') + +try: + rsq = r.round(float(rsq), digits=5) + adjrsq = r.round(float(adjrsq), digits=5) + fval = r.round(fstat['value'], digits=5) + fstat['value'] = str(fval) + sigma = r.round(float(sigma), digits=10) +except: + pass + +print >>fout, "R-squared\t%s" %(rsq) +print >>fout, "Adjusted R-squared\t%s" %(adjrsq) +print >>fout, "F-statistic\t%s" %(fstat) +print >>fout, "Sigma\t%s" %(sigma) + +r.pdf( outfile2, 8, 8 ) +if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable + sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) + try: + r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") + r.abline(a=yintercept, b=slope, col="red") + except: + pass +else: + r.pairs(dat, main="Scatterplot Matrix", col="blue") +try: + r.plot(linear_model) +except: + pass +r.dev_off()