Mercurial > repos > xuebing > sharplabtool
view tools/discreteWavelet/execute_dwt_var_perFeature.pl @ 0:9071e359b9a3
Uploaded
author | xuebing |
---|---|
date | Fri, 09 Mar 2012 19:37:19 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/perl -w # Author: Erika Kvikstad use warnings; use IO::Handle; use POSIX qw(floor ceil); $usage = "execute_dwt_var_perFeature.pl [TABULAR.in] [FEATURE] [ALPHA] [TABULAR.out] [PDF.out] \n"; die $usage unless @ARGV == 5; #get the input arguments my $inputFile = $ARGV[0]; my @features = split(/,/,$ARGV[1]); my $features_count = scalar(@features); my $alpha = $ARGV[2]; my $outFile1 = $ARGV[3]; my $outFile2 = $ARGV[4]; open (INPUT, "<", $inputFile) || die("Could not open file $inputFile \n"); open (OUTPUT2, ">", $outFile1) || die("Could not open file $outFile1 \n"); open (OUTPUT3, ">", $outFile2) || die("Could not open file $outFile2 \n"); #open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n"); # choosing meaningful names for the output files $pvalue = $outFile1; $pdf = $outFile2; # write R script $r_script = "get_dwt_varPermut.r"; open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n"; print Rcmd " ###################################################################### # plot multiscale wavelet variance # create null bands by permuting the original data series # generate plots and table of wavelet variance including p-values ###################################################################### options(echo = FALSE) #library(\"Rwave\"); #library(\"wavethresh\"); #library(\"waveslim\"); # turn off diagnostics for de-bugging only, turn back on for functional tests on test require(\"Rwave\",quietly=TRUE,warn.conflicts = FALSE); require(\"wavethresh\",quietly=TRUE,warn.conflicts = FALSE); require(\"waveslim\",quietly=TRUE,warn.conflicts = FALSE); require(\"bitops\",quietly=TRUE,warn.conflicts = FALSE); # to determine if data is properly formatted 2^N observations is.power2<- function(x){x && !(bitAnd(x,x - 1));} # dwt : discrete wavelet transform using Haar wavelet filter, simplest wavelet function but later can modify to let user-define the wavelet filter function dwt_var_permut_getMax <- function(data, names, alpha, filter = 1,family=\"DaubExPhase\", bc = \"symmetric\", method = \"kendall\", wf = \"haar\", boundary = \"reflection\") { max_var = NULL; matrix = NULL; title = NULL; final_pvalue = NULL; J = NULL; scale = NULL; out = NULL; print(class(data)); print(names); print(alpha); par(mar=c(5,4,4,3),oma = c(4, 4, 3, 2), xaxt = \"s\", cex = 1, las = 1); title<-c(\"Wavelet\",\"Variance\",\"Pvalue\",\"Test\"); print(title); for(i in 1:length(names)){ temp = NULL; results = NULL; wave1.dwt = NULL; # if data fails formatting check, do something print(is.numeric(as.matrix(data)[, i])); if(!is.numeric(as.matrix(data)[, i])) stop(\"data must be a numeric vector\"); print(length(as.matrix(data)[, i])); print(is.power2(length(as.matrix(data)[, i]))); if(!is.power2(length(as.matrix(data)[, i]))) stop(\"data length must be a power of two\"); J <- wd(as.matrix(data)[, i], filter.number = filter, family=family, bc = bc)\$nlevels; print(J); temp <- vector(length = J); wave1.dwt <- dwt(as.matrix(data)[, i], wf = wf, J, boundary = boundary); #print(wave1.dwt); temp <- wave.variance(wave1.dwt)[-(J+1), 1]; print(temp); #permutations code : feature1 = NULL; null = NULL; var_lower=limit_lower=NULL; var_upper=limit_upper=NULL; med = NULL; limit_lower = alpha/2*1000; print(limit_lower); limit_upper = (1-alpha/2)*1000; print(limit_upper); feature1 = as.matrix(data)[,i]; for (k in 1:1000) { nk_1 = NULL; null.levels = NULL; var = NULL; null_wave1 = NULL; nk_1 = sample(feature1, length(feature1), replace = FALSE); null.levels <- wd(nk_1, filter.number = filter,family=family ,bc = bc)\$nlevels; var <- vector(length = length(null.levels)); null_wave1 <- dwt(nk_1, wf = wf, J, boundary = boundary); var<- wave.variance(null_wave1)[-(null.levels+1), 1]; null= rbind(null, var); } null <- apply(null, 2, sort, na.last = TRUE); var_lower <- null[limit_lower, ]; var_upper <- null[limit_upper, ]; med <- (apply(null, 2, median, na.rm = TRUE)); # plot results <- cbind(temp, var_lower, var_upper); print(results); matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2),xaxt='n',xlab=\"Wavelet Scale\",ylab=\"Wavelet variance\" ); mtext(names[i], side = 3, line = 0.5, cex = 1); axis(1, at = 1:J , labels=c(2^(0:(J-1))), las = 3, cex.axis = 1); # get pvalues by comparison to null distribution #out <- (names[i]); for (m in 1:length(temp)){ print(paste(\"scale\", m, sep = \" \")); print(paste(\"var\", temp[m], sep = \" \")); print(paste(\"med\", med[m], sep = \" \")); pv = tail =scale = NULL; scale=2^(m-1); #out <- c(out, format(temp[m], digits = 3)); if (temp[m] >= med[m]){ # R tail test print(\"R\"); tail <- \"R\"; pv <- (length(which(null[, m] >= temp[m])))/(length(na.exclude(null[, m]))); } else { if (temp[m] < med[m]){ # L tail test print(\"L\"); tail <- \"L\"; pv <- (length(which(null[, m] <= temp[m])))/(length(na.exclude(null[, m]))); } } print(pv); out<-rbind(out,c(paste(\"Scale\", scale, sep=\"_\"),format(temp[m], digits = 3),pv,tail)); } final_pvalue <-rbind(final_pvalue, out); } colnames(final_pvalue) <- title; return(final_pvalue); }\n"; print Rcmd " # execute # read in data data_test = final = NULL; sub = sub_names = NULL; data_test <- read.delim(\"$inputFile\",header=FALSE); pdf(file = \"$pdf\", width = 11, height = 8)\n"; for ($x=0;$x<$features_count;$x++){ $feature=$features[$x]; print Rcmd " if ($feature > ncol(data_test)) stop(\"column $feature doesn't exist\"); sub<-data_test[,$feature]; #sub_names <- colnames(data_test); sub_names<-colnames(data_test)[$feature]; final <- rbind(final,dwt_var_permut_getMax(sub, sub_names,$alpha));\n"; } print Rcmd " dev.off(); write.table(final, file = \"$pvalue\", sep = \"\\t\", quote = FALSE, row.names = FALSE); #eof\n"; close Rcmd; system("R --no-restore --no-save --no-readline < $r_script > $r_script.out"); #close the input and output and error files close(OUTPUT3); close(OUTPUT2); close(INPUT);