0
|
1 #!/usr/bin/perl -w
|
|
2 # Author: Erika Kvikstad
|
|
3
|
|
4 use warnings;
|
|
5 use IO::Handle;
|
|
6 use POSIX qw(floor ceil);
|
|
7
|
|
8 $usage = "execute_dwt_var_perFeature.pl [TABULAR.in] [FEATURE] [ALPHA] [TABULAR.out] [PDF.out] \n";
|
|
9 die $usage unless @ARGV == 5;
|
|
10
|
|
11 #get the input arguments
|
|
12 my $inputFile = $ARGV[0];
|
|
13 my @features = split(/,/,$ARGV[1]);
|
|
14 my $features_count = scalar(@features);
|
|
15 my $alpha = $ARGV[2];
|
|
16 my $outFile1 = $ARGV[3];
|
|
17 my $outFile2 = $ARGV[4];
|
|
18
|
|
19 open (INPUT, "<", $inputFile) || die("Could not open file $inputFile \n");
|
|
20 open (OUTPUT2, ">", $outFile1) || die("Could not open file $outFile1 \n");
|
|
21 open (OUTPUT3, ">", $outFile2) || die("Could not open file $outFile2 \n");
|
|
22 #open (ERROR, ">", "error.txt") or die ("Could not open file error.txt \n");
|
|
23
|
|
24 # choosing meaningful names for the output files
|
|
25 $pvalue = $outFile1;
|
|
26 $pdf = $outFile2;
|
|
27
|
|
28 # write R script
|
|
29 $r_script = "get_dwt_varPermut.r";
|
|
30
|
|
31 open(Rcmd, ">", "$r_script") or die "Cannot open $r_script \n\n";
|
|
32
|
|
33 print Rcmd "
|
|
34 ######################################################################
|
|
35 # plot multiscale wavelet variance
|
|
36 # create null bands by permuting the original data series
|
|
37 # generate plots and table of wavelet variance including p-values
|
|
38 ######################################################################
|
|
39 options(echo = FALSE)
|
|
40 #library(\"Rwave\");
|
|
41 #library(\"wavethresh\");
|
|
42 #library(\"waveslim\");
|
|
43 # turn off diagnostics for de-bugging only, turn back on for functional tests on test
|
|
44 require(\"Rwave\",quietly=TRUE,warn.conflicts = FALSE);
|
|
45 require(\"wavethresh\",quietly=TRUE,warn.conflicts = FALSE);
|
|
46 require(\"waveslim\",quietly=TRUE,warn.conflicts = FALSE);
|
|
47 require(\"bitops\",quietly=TRUE,warn.conflicts = FALSE);
|
|
48
|
|
49 # to determine if data is properly formatted 2^N observations
|
|
50 is.power2<- function(x){x && !(bitAnd(x,x - 1));}
|
|
51
|
|
52 # dwt : discrete wavelet transform using Haar wavelet filter, simplest wavelet function but later can modify to let user-define the wavelet filter function
|
|
53 dwt_var_permut_getMax <- function(data, names, alpha, filter = 1,family=\"DaubExPhase\", bc = \"symmetric\", method = \"kendall\", wf = \"haar\", boundary = \"reflection\") {
|
|
54 max_var = NULL;
|
|
55 matrix = NULL;
|
|
56 title = NULL;
|
|
57 final_pvalue = NULL;
|
|
58 J = NULL;
|
|
59 scale = NULL;
|
|
60 out = NULL;
|
|
61
|
|
62 print(class(data));
|
|
63 print(names);
|
|
64 print(alpha);
|
|
65
|
|
66 par(mar=c(5,4,4,3),oma = c(4, 4, 3, 2), xaxt = \"s\", cex = 1, las = 1);
|
|
67
|
|
68 title<-c(\"Wavelet\",\"Variance\",\"Pvalue\",\"Test\");
|
|
69 print(title);
|
|
70
|
|
71 for(i in 1:length(names)){
|
|
72 temp = NULL;
|
|
73 results = NULL;
|
|
74 wave1.dwt = NULL;
|
|
75
|
|
76 # if data fails formatting check, do something
|
|
77
|
|
78 print(is.numeric(as.matrix(data)[, i]));
|
|
79 if(!is.numeric(as.matrix(data)[, i]))
|
|
80 stop(\"data must be a numeric vector\");
|
|
81
|
|
82 print(length(as.matrix(data)[, i]));
|
|
83 print(is.power2(length(as.matrix(data)[, i])));
|
|
84 if(!is.power2(length(as.matrix(data)[, i])))
|
|
85 stop(\"data length must be a power of two\");
|
|
86
|
|
87
|
|
88 J <- wd(as.matrix(data)[, i], filter.number = filter, family=family, bc = bc)\$nlevels;
|
|
89 print(J);
|
|
90 temp <- vector(length = J);
|
|
91 wave1.dwt <- dwt(as.matrix(data)[, i], wf = wf, J, boundary = boundary);
|
|
92 #print(wave1.dwt);
|
|
93
|
|
94 temp <- wave.variance(wave1.dwt)[-(J+1), 1];
|
|
95 print(temp);
|
|
96
|
|
97 #permutations code :
|
|
98 feature1 = NULL;
|
|
99 null = NULL;
|
|
100 var_lower=limit_lower=NULL;
|
|
101 var_upper=limit_upper=NULL;
|
|
102 med = NULL;
|
|
103
|
|
104 limit_lower = alpha/2*1000;
|
|
105 print(limit_lower);
|
|
106 limit_upper = (1-alpha/2)*1000;
|
|
107 print(limit_upper);
|
|
108
|
|
109 feature1 = as.matrix(data)[,i];
|
|
110 for (k in 1:1000) {
|
|
111 nk_1 = NULL;
|
|
112 null.levels = NULL;
|
|
113 var = NULL;
|
|
114 null_wave1 = NULL;
|
|
115
|
|
116 nk_1 = sample(feature1, length(feature1), replace = FALSE);
|
|
117 null.levels <- wd(nk_1, filter.number = filter,family=family ,bc = bc)\$nlevels;
|
|
118 var <- vector(length = length(null.levels));
|
|
119 null_wave1 <- dwt(nk_1, wf = wf, J, boundary = boundary);
|
|
120 var<- wave.variance(null_wave1)[-(null.levels+1), 1];
|
|
121 null= rbind(null, var);
|
|
122 }
|
|
123 null <- apply(null, 2, sort, na.last = TRUE);
|
|
124 var_lower <- null[limit_lower, ];
|
|
125 var_upper <- null[limit_upper, ];
|
|
126 med <- (apply(null, 2, median, na.rm = TRUE));
|
|
127
|
|
128 # plot
|
|
129 results <- cbind(temp, var_lower, var_upper);
|
|
130 print(results);
|
|
131 matplot(results, type = \"b\", pch = \"*\", lty = 1, col = c(1, 2, 2),xaxt='n',xlab=\"Wavelet Scale\",ylab=\"Wavelet variance\" );
|
|
132 mtext(names[i], side = 3, line = 0.5, cex = 1);
|
|
133 axis(1, at = 1:J , labels=c(2^(0:(J-1))), las = 3, cex.axis = 1);
|
|
134
|
|
135 # get pvalues by comparison to null distribution
|
|
136 #out <- (names[i]);
|
|
137 for (m in 1:length(temp)){
|
|
138 print(paste(\"scale\", m, sep = \" \"));
|
|
139 print(paste(\"var\", temp[m], sep = \" \"));
|
|
140 print(paste(\"med\", med[m], sep = \" \"));
|
|
141 pv = tail =scale = NULL;
|
|
142 scale=2^(m-1);
|
|
143 #out <- c(out, format(temp[m], digits = 3));
|
|
144 if (temp[m] >= med[m]){
|
|
145 # R tail test
|
|
146 print(\"R\");
|
|
147 tail <- \"R\";
|
|
148 pv <- (length(which(null[, m] >= temp[m])))/(length(na.exclude(null[, m])));
|
|
149
|
|
150 } else {
|
|
151 if (temp[m] < med[m]){
|
|
152 # L tail test
|
|
153 print(\"L\");
|
|
154 tail <- \"L\";
|
|
155 pv <- (length(which(null[, m] <= temp[m])))/(length(na.exclude(null[, m])));
|
|
156 }
|
|
157 }
|
|
158 print(pv);
|
|
159 out<-rbind(out,c(paste(\"Scale\", scale, sep=\"_\"),format(temp[m], digits = 3),pv,tail));
|
|
160 }
|
|
161 final_pvalue <-rbind(final_pvalue, out);
|
|
162 }
|
|
163 colnames(final_pvalue) <- title;
|
|
164 return(final_pvalue);
|
|
165 }\n";
|
|
166
|
|
167 print Rcmd "
|
|
168 # execute
|
|
169 # read in data
|
|
170 data_test = final = NULL;
|
|
171 sub = sub_names = NULL;
|
|
172 data_test <- read.delim(\"$inputFile\",header=FALSE);
|
|
173 pdf(file = \"$pdf\", width = 11, height = 8)\n";
|
|
174
|
|
175 for ($x=0;$x<$features_count;$x++){
|
|
176 $feature=$features[$x];
|
|
177 print Rcmd "
|
|
178 if ($feature > ncol(data_test))
|
|
179 stop(\"column $feature doesn't exist\");
|
|
180 sub<-data_test[,$feature];
|
|
181 #sub_names <- colnames(data_test);
|
|
182 sub_names<-colnames(data_test)[$feature];
|
|
183 final <- rbind(final,dwt_var_permut_getMax(sub, sub_names,$alpha));\n";
|
|
184 }
|
|
185
|
|
186 print Rcmd "
|
|
187
|
|
188 dev.off();
|
|
189 write.table(final, file = \"$pvalue\", sep = \"\\t\", quote = FALSE, row.names = FALSE);
|
|
190
|
|
191 #eof\n";
|
|
192
|
|
193 close Rcmd;
|
|
194 system("R --no-restore --no-save --no-readline < $r_script > $r_script.out");
|
|
195
|
|
196 #close the input and output and error files
|
|
197 close(OUTPUT3);
|
|
198 close(OUTPUT2);
|
|
199 close(INPUT);
|