0
|
1 #!/usr/bin/env perl
|
|
2
|
|
3 BEGIN{
|
|
4 my $prog_dir = `dirname $0`;
|
|
5 chomp $prog_dir;
|
|
6 push @INC, $prog_dir; # so DisjointSets.pm can be found no matter the working directory
|
|
7 }
|
|
8
|
|
9 use DisjointSets; # homebrew module
|
|
10 use Bio::DB::Sam; # for FastA reference pulls
|
|
11 use Bio::SeqUtils;
|
|
12 use Bio::Tools::CodonTable;
|
|
13 use Statistics::Zed;
|
|
14 use Getopt::Long;
|
|
15 use Set::IntervalTree;
|
|
16 use strict;
|
|
17 use warnings;
|
|
18 use vars qw($min_prop $zed $codonTable $default_transl_table %transl_except %internal_prop %dbsnp_info %chr2variant_locs %chr2dbsnp_vcf_lines %chr2internal_vcf_lines %chr2caveats %chr2phase @snvs $fasta_index $max_args $quiet);
|
|
19
|
|
20 if(@ARGV == 1 and $ARGV[0] eq "-v"){
|
|
21 print "Version 1.0\n";
|
|
22 exit;
|
|
23 }
|
|
24
|
|
25 #$max_args = `getconf ARG_MAX`; # largest number of args you can send to a system command (enviroment included, see limits.h)
|
|
26 #chomp $max_args;
|
|
27 $max_args = 4096; # if not defined $max_args or $max_args < 1; # the minimum since System V
|
|
28 $max_args -= 50;
|
|
29
|
|
30 # find out if a variant appears in the user provided data
|
|
31 sub internal_prop($$$$){
|
|
32 my ($chr,$pos,$ref,$variant) = @_;
|
|
33
|
|
34 my $key = "$chr:$pos:$ref:$variant";
|
|
35 if(exists $internal_prop{$key}){
|
|
36 return $internal_prop{$key};
|
|
37 }
|
|
38
|
|
39 #print STDERR "Checking if internal_prop for $key exists: ";
|
|
40 if(exists $chr2internal_vcf_lines{$chr}->{$pos}){
|
|
41 for(@{$chr2internal_vcf_lines{$chr}->{$pos}}){
|
|
42 my @fields = split /\t/, $_;
|
|
43 if($pos == $fields[1] and length($fields[3]) == length($ref) and $fields[4] eq $variant){
|
|
44 #print STDERR "yes\n";
|
|
45 if(/MAF=(\d\.\d+)/){
|
|
46 $internal_prop{$key} = $1; # change from percent to proportion
|
|
47 return $1;
|
|
48 }
|
|
49 }
|
|
50 }
|
|
51 }
|
|
52 else{
|
|
53 #print STDERR "no\n";
|
|
54 }
|
|
55
|
|
56 $internal_prop{$key} = "NA";
|
|
57 return "NA";
|
|
58 }
|
|
59
|
|
60 # find out if a variant appears in the NCBI's dbSNP
|
|
61 sub dbsnp_info($$$$){
|
|
62 my ($chr,$pos,$ref,$variant) = @_;
|
|
63
|
|
64 my $key = "$chr:$pos:$ref:$variant";
|
|
65 if(exists $dbsnp_info{$key}){
|
|
66 return @{$dbsnp_info{$key}};
|
|
67 }
|
|
68
|
|
69 if(exists $chr2dbsnp_vcf_lines{$chr}->{$pos}){
|
|
70 #print STDERR "Checking existing SNP data for $chr:$pos -> ", join("\n", @{$chr2dbsnp_vcf_lines{$chr}->{$pos}}), "\n";
|
|
71 for(@{$chr2dbsnp_vcf_lines{$chr}->{$pos}}){
|
|
72 my @fields = split /\t/, $_;
|
|
73 for my $var (split /,/, $fields[4]){
|
|
74 # Allows for different reference seqs between dbSNP and input, assuming patches only
|
|
75 if(length($fields[3]) == length($ref) and ($var eq $variant or $ref eq $var and $variant eq $fields[3])){
|
|
76 my ($freq, $subpop) = ("","");
|
|
77 $freq = $1 if $fields[7] =~ /(?:\A|;)MMAF=(0\.\d+)(?:;|\Z)/;
|
|
78 $subpop = $1 if $fields[7] =~ /(?:\A|;)MMAF_SRC=(\S+?)(?:;|\Z)/;
|
|
79 $dbsnp_info{$key} = [$subpop, $freq || "NA", $fields[2]];
|
|
80 return @{$dbsnp_info{$key}};
|
|
81 }
|
|
82 }
|
|
83 }
|
|
84 }
|
|
85 $dbsnp_info{$key} = ["novel", "NA", "NA"];
|
|
86 return @{$dbsnp_info{$key}};
|
|
87 }
|
|
88
|
|
89 sub record_snv{
|
|
90 my $line = join("", @_);
|
|
91 push @snvs, $line;
|
|
92
|
|
93 my @fields = split /\t/, $line;
|
|
94 my $prop_info_key = $fields[9];
|
|
95 my ($chr,$pos,$ref,$variant) = split /:/, $prop_info_key;
|
|
96 $chr2variant_locs{$chr} = {} unless exists $chr2variant_locs{$chr};
|
|
97 return unless $ref; # ref not defined for CNVs
|
|
98 # Need to grab whole range for MNPs
|
|
99 for(my $i = 0; $i < length($ref); $i++){
|
|
100 $chr2variant_locs{$chr}->{$pos+$i} = 1;
|
|
101 }
|
|
102 }
|
|
103
|
|
104 sub retrieve_vcf_lines($$$){
|
|
105 my ($dbsnp_file, $internal_snp_file, $chr) = @_;
|
|
106
|
|
107 my (%dbsnp_lines, %internal_snp_lines);
|
|
108
|
|
109 if(not defined $dbsnp_file or not exists $chr2variant_locs{$chr}){
|
|
110 return ({}, {}, {}, {}); # no data requested for this chromosome
|
|
111 }
|
|
112
|
|
113 # build up the request
|
|
114 my @tabix_regions;
|
|
115 my @var_locs = keys %{$chr2variant_locs{$chr}};
|
|
116 # sort by variant start location
|
|
117 for my $var_loc (sort {$a <=> $b} @var_locs){
|
|
118 push @tabix_regions, $chr.":".$var_loc."-".$var_loc;
|
|
119 }
|
|
120 for(my $i = 0; $i <= $#tabix_regions; $i += $max_args){ # chunkify tabix request if too many for the system to handle
|
|
121 my $end = $i + $max_args > $#tabix_regions ? $#tabix_regions : $i + $max_args;
|
|
122 my $regions = "'".join("' '", @tabix_regions[$i..$end])."'";
|
|
123 # From file is very slow for some reason
|
|
124 #my $regions_file = "/tmp/vcf2hgvs_$$.bed";
|
|
125 #open(REQ_BED, ">$regions_file")
|
|
126 # or die "Cannot open $regions_file for writing: $!\n";
|
|
127 #print REQ_BED join("\n", @tabix_regions), "\n";
|
|
128 #close(REQ_BED);
|
|
129
|
|
130 # retrieve the data
|
|
131 die "Cannot find dbSNP VCF file $dbsnp_file\n" if not -e $dbsnp_file;
|
|
132
|
|
133 open(VCF, "tabix $dbsnp_file $regions |")
|
|
134 or die "Cannot run tabix on $dbsnp_file (args ".substr($regions, 0, length($regions)>100? 100 : length($regions))."): $!\n";
|
|
135 while(<VCF>){
|
|
136 #if(/^(\S+\t(\d+)(?:\t\S+){6})/ and grep {$_ eq $2} @var_locs){ # take only main columns to save room, if possible
|
|
137 if(/^(\S+\t(\d+)(?:\t\S+){6})/ and exists $chr2variant_locs{$chr}->{$2}){ # take only main columns to save room, if possible
|
|
138 $dbsnp_lines{$2} = [] unless exists $dbsnp_lines{$2};
|
|
139 push @{$dbsnp_lines{$2}}, $1;
|
|
140 }
|
|
141 }
|
|
142 close(VCF);
|
|
143
|
|
144 if($internal_snp_file){
|
|
145 die "Cannot find internal VCF file $internal_snp_file\n" if not -e $internal_snp_file;
|
|
146 open(VCF, "tabix $internal_snp_file $regions |")
|
|
147 or die "Cannot run tabix on $internal_snp_file: $!\n";
|
|
148 while(<VCF>){
|
|
149 #if(/^(\S+\t(\d+)(?:\t\S+){6})/ and grep {$_ eq $2} @var_locs){ # take only main columns to save room, if possible
|
|
150 if(/^(\S+\t(\d+)(?:\t\S+){5})/ and exists $chr2variant_locs{$chr}->{$2}){ # take only main columns to save room, if possible
|
|
151 $internal_snp_lines{$2} = [] unless exists $internal_snp_lines{$2};
|
|
152 push @{$internal_snp_lines{$2}}, $1;
|
|
153 }
|
|
154 }
|
|
155 close(VCF);
|
|
156 }
|
|
157 }
|
|
158
|
|
159 #unlink $regions_file;
|
|
160
|
|
161 return (\%dbsnp_lines, \%internal_snp_lines);
|
|
162 }
|
|
163
|
|
164 sub prop_info_key{
|
|
165 my($chr,$pos,$ref,$variant,$exon_edge_dist) = @_;
|
|
166
|
|
167 $chr =~ s/^chr//;
|
|
168 if($chr eq "M"){
|
|
169 $chr = "MT"; # NCBI uses different name for mitochondrial chromosome
|
|
170 $pos-- if $pos >= 3107; # also, doesn't keep the old positioning (historical)
|
|
171 }
|
|
172 return join(":", $chr,$pos,$ref,$variant, ($exon_edge_dist ? $exon_edge_dist : ""));
|
|
173 }
|
|
174
|
|
175 sub prop_info($$$){
|
|
176 my($snpfile,$internal_snps_file,$prop_info_key) = @_;
|
|
177
|
|
178 my($chr,$pos,$ref,$variant) = split /:/, $prop_info_key;
|
|
179
|
|
180 # is this the first call for this chromosome? If so, retrieve the VCF lines for it en masse
|
|
181 if(not exists $chr2dbsnp_vcf_lines{$chr}){
|
|
182 ($chr2dbsnp_vcf_lines{$chr}, $chr2internal_vcf_lines{$chr}) = retrieve_vcf_lines($snpfile,$internal_snps_file,$chr);
|
|
183 }
|
|
184 my $internal_maf = 0;
|
|
185 if($internal_snps_file){
|
|
186 $internal_maf = internal_prop($chr,$pos,$ref,$variant);
|
|
187 $internal_maf = 0 if $internal_maf eq "NA";
|
|
188 }
|
|
189
|
|
190 my @results = dbsnp_info($chr,$pos,$ref,$variant);
|
|
191
|
|
192 # Not all entries have a proportion in dbSNP
|
|
193 return $internal_snps_file ? ($ref, $variant, @results, $internal_maf) : ($ref, $variant, @results);
|
|
194 }
|
|
195
|
|
196 #offset a given HGVS nomenclature position (single position only) by a given number of bases
|
|
197 sub hgvs_plus($$){
|
|
198 my ($hgvs, $offset) = @_;
|
|
199 if($hgvs =~ /^(\S+)(-\d+)(.*)/){
|
|
200 # all negative
|
|
201 if($2+$offset<0){
|
|
202 return $1.($2+$offset).$3;
|
|
203 }
|
|
204 # switches to positive, need to mod
|
|
205 else{
|
|
206 return $1+($2+$offset);
|
|
207 }
|
|
208 }
|
|
209 elsif($hgvs =~ /^(\S+)\+(\d+)(.*)/){
|
|
210 # all positive
|
|
211 if($2+$offset>0){
|
|
212 return $1."+".($2+$offset).$3;
|
|
213 }
|
|
214 # switches to negative, need to mod
|
|
215 else{
|
|
216 return $1+($2+$offset);
|
|
217 }
|
|
218 }
|
|
219 elsif($hgvs =~ /^(-?\d+)(.*)/){
|
|
220 # special case if offset spans -/+ since there is no position 0
|
|
221 if($1 < 0 and $1+$offset >= 0){
|
|
222 $offset++;
|
|
223 }
|
|
224 elsif($1 > 0 and $1+$offset <= 0){
|
|
225 $offset--;
|
|
226 }
|
|
227 return ($1+$offset).$2;
|
|
228 }
|
|
229 else{
|
|
230 die "Cannot convert $hgvs to a new offset ($offset), only single base position nomenclature is currently supported\n";
|
|
231 }
|
|
232 }
|
|
233
|
|
234 # offset a given position by a given number of bases,
|
|
235 # taking into account that if the new offset crosses the threshold in the last argument,
|
|
236 # HGVS boundary nomenclature has to be introduced
|
|
237 sub hgvs_plus_exon($$$){
|
|
238 my ($pos, $offset, $boundary) = @_;
|
|
239
|
|
240 # special case if offset spans -/+ since there is no position 0
|
|
241 if($pos =~ /^(-?\d+)(.*)/){
|
|
242 if($1 < 0 and $1+$offset >= 0){
|
|
243 $offset++;
|
|
244 }
|
|
245 elsif($1 > 0 and $1+$offset <= 0){
|
|
246 $offset--;
|
|
247 }
|
|
248 }
|
|
249 my $new_pos = $pos + $offset;
|
|
250 if($new_pos > $boundary and $pos <= $boundary){
|
|
251 # just moved into an intron 3'
|
|
252 $new_pos = $boundary."+".($new_pos-$boundary);
|
|
253 }
|
|
254 elsif($new_pos < $boundary and $pos >= $boundary){
|
|
255 # just moved into an intron 5'
|
|
256 $new_pos = $boundary.($new_pos-$boundary);
|
|
257 }
|
|
258 return $new_pos;
|
|
259 }
|
|
260
|
|
261 # given a nucleotide position, calculates the AA there (assumes coding region)
|
|
262 sub getCodonFromSeq($$$$){
|
|
263 my ($chr_ref, $location, $frame_offset, $strand) = @_;
|
|
264
|
|
265 my $codon;
|
|
266 if($strand eq "+"){
|
|
267 $codon = substr($$chr_ref, $location-1-$frame_offset, 3);
|
|
268 }
|
|
269 else{
|
|
270 $codon = substr($$chr_ref, $location-3+$frame_offset, 3);
|
|
271 $codon = reverse($codon);
|
|
272 $codon =~ tr/ACGTacgt/TGCAtgca/;
|
|
273 }
|
|
274 return $codon;
|
|
275 }
|
|
276
|
|
277 sub getCodonFromSeqIndex($$$$){
|
|
278 my ($chr, $location, $frame_offset, $strand) = @_;
|
|
279
|
|
280 my $codon;
|
|
281 if($strand eq "+"){
|
|
282 $codon = $fasta_index->fetch($chr.":".($location-$frame_offset)."-".($location-$frame_offset+2));
|
|
283 }
|
|
284 else{
|
|
285 $codon = $fasta_index->fetch($chr.":".($location-2+$frame_offset)."-".($location+$frame_offset));
|
|
286 $codon = reverse($codon);
|
|
287 $codon =~ tr/ACGTacgt/TGCAtgca/;
|
|
288 }
|
|
289 return $codon;
|
|
290 }
|
|
291
|
|
292 sub getAAFromSeq($$$$$){
|
|
293 return $_[4]->translate(getCodonFromSeq($_[0], $_[1], $_[2], $_[3]));
|
|
294 }
|
|
295
|
|
296 sub getAAFromSeqIndex($$$$$){
|
|
297 # convert codon to AA
|
|
298 if(exists $transl_except{"$_[0]:$_[1]"}){
|
|
299 return $transl_except{"$_[0]:$_[1]"};
|
|
300 }
|
|
301 else{
|
|
302 return $_[4]->translate(getCodonFromSeqIndex($_[0], $_[1], $_[2], $_[3]));
|
|
303 }
|
|
304 }
|
|
305
|
|
306 sub hgvs_protein{
|
|
307 my ($chr, $location, $ref, $variant, $cdna_pos, $strand, $transl_table) = @_;
|
|
308
|
|
309 if(substr($ref,0,1) eq substr($variant,0,1)){
|
|
310 substr($ref,0,1) = "";
|
|
311 substr($variant,0,1) = "";
|
|
312 $location++;
|
|
313 if($strand eq "-"){
|
|
314 $cdna_pos--;
|
|
315 }
|
|
316 else{
|
|
317 $cdna_pos++;
|
|
318 }
|
|
319 }
|
|
320
|
|
321 if($cdna_pos !~ /^\d+/){
|
|
322 die "Aborting: got illegal cDNA position ($cdna_pos) for protein HGVS conversion of position ",
|
|
323 "$location, ref $ref, variant $variant. Please correct the program code.\n";
|
|
324 }
|
|
325 # Get the correct frame for the protein translation, to know what codons are affected
|
|
326 my $aapos = int(($cdna_pos-1)/3)+1;
|
|
327
|
|
328 # does it destroy the start codon?
|
|
329 if($cdna_pos < 4){ # assumes animal codon usage
|
|
330 return "p.0?"; # indicates start codon missing, unsure of effect
|
|
331 }
|
|
332
|
|
333 my $table = $transl_table ne $default_transl_table ? # non standard translation table requested
|
|
334 Bio::Tools::CodonTable->new(-id=>$transl_table) : $codonTable;
|
|
335
|
|
336 my $frame_offset = ($cdna_pos-1)%3;
|
|
337 my $origAA = getAAFromSeqIndex($chr, $location, $frame_offset, $strand, $table);
|
|
338 # take 100000 bp on either side for translation context of variant seq
|
|
339 my $five_prime_buffer = $location < 10000 ? $location-1 : 10000;
|
|
340 my $mutSeq = $fasta_index->fetch($chr.":".($location-$five_prime_buffer)."-".($location+10000));
|
|
341
|
|
342 # substitute all of the immediately adjacent variants in phase with this one to get the correct local effect
|
|
343 substr($mutSeq, $five_prime_buffer, length($ref)) = $variant;
|
|
344
|
|
345 # does it cause a frameshift?
|
|
346 my $length_diff = length($variant)-length($ref);
|
|
347 if($length_diff%3){ # insertion or deletion not a multiple of three
|
|
348 my $fs_codon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1, $frame_offset, $strand);
|
|
349 my $ext = 0;
|
|
350 my $newAA;
|
|
351 do{
|
|
352 $ext++;
|
|
353 # The "NA"s below make it so that we don't pick up any translation exceptions from the original reference annotation
|
|
354 if($strand eq "+"){
|
|
355 $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1+$ext*3, $frame_offset, $strand, $table);
|
|
356 }
|
|
357 else{
|
|
358 $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1-$ext*3, $frame_offset, $strand, $table);
|
|
359 }
|
|
360 } while($newAA ne "*");
|
|
361
|
|
362 return "p.".$origAA.$aapos.$table->translate($fs_codon)."fs*$ext";
|
|
363 }
|
|
364
|
|
365 # does it cause a stop codon to be lost?
|
|
366 if($origAA eq "*"){
|
|
367 my $stopChangeCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1, $frame_offset, $strand);
|
|
368 # still a stop after the mutation (ignore translation exceptions)
|
|
369 if($table->is_ter_codon($stopChangeCodon)){
|
|
370 return "p.*$aapos=";
|
|
371 }
|
|
372 # calculate the new stop, assuming there aren't mutations downstream in candidate stop codons
|
|
373 my $ext = 0;
|
|
374 my $newCodon;
|
|
375 do{
|
|
376 if($strand eq "+"){
|
|
377 $newCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1+(++$ext*3), $frame_offset, $strand);
|
|
378 }
|
|
379 else{
|
|
380 $newCodon = getCodonFromSeq(\$mutSeq, $five_prime_buffer+1-(++$ext*3), $frame_offset, $strand);
|
|
381 }
|
|
382 } while(not $table->is_ter_codon($newCodon));
|
|
383
|
|
384 return "p.*".$aapos.$table->translate($stopChangeCodon)."ext*".$ext;
|
|
385 }
|
|
386
|
|
387 # if we get this far, it's a "regular" AA level change
|
|
388 my $origAAs = "";
|
|
389 for(my $i = 0; $i < length($ref)+$frame_offset; $i+=3){
|
|
390 my $oldAA = getAAFromSeqIndex($chr, $location+$i, $frame_offset, $strand, $table);
|
|
391 if($strand eq "+"){
|
|
392 $origAAs .= $oldAA;
|
|
393 }
|
|
394 else{
|
|
395 $origAAs = $oldAA . $origAAs;
|
|
396 }
|
|
397 }
|
|
398 my $newAAs = "";
|
|
399 for(my $i = 0; $i < length($variant)+$frame_offset; $i+=3){
|
|
400 # NA means we don't take translation exceptions from the original
|
|
401 my $newAA = getAAFromSeq(\$mutSeq, $five_prime_buffer+1+$i, $frame_offset, $strand, $table);
|
|
402 if($strand eq "+"){
|
|
403 $newAAs .= $newAA;
|
|
404 }
|
|
405 else{
|
|
406 $newAAs = $newAA . $newAAs;
|
|
407 }
|
|
408 }
|
|
409
|
|
410 # silent
|
|
411 if($origAAs eq $newAAs){
|
|
412 return "p.".$origAAs.$aapos."=";
|
|
413 }
|
|
414
|
|
415 # minimize the difference if there are leading or trailing AAs the same
|
|
416 my $delLength = length($ref);
|
|
417 while(substr($newAAs, 0, 1) eq substr($origAAs, 0, 1)){
|
|
418 $newAAs = substr($newAAs, 1);
|
|
419 $origAAs = substr($origAAs, 1);
|
|
420 $location+=3;
|
|
421 $delLength-=3;
|
|
422 $aapos++;
|
|
423 }
|
|
424 while(substr($newAAs, -1) eq substr($origAAs, -1)){
|
|
425 $newAAs = substr($newAAs, 0, length($newAAs)-1);
|
|
426 $origAAs = substr($origAAs, 0, length($origAAs)-1);
|
|
427 }
|
|
428
|
|
429 # insertion
|
|
430 if(length($origAAs) == 0){
|
|
431 my $insAAs = getAAFromSeqIndex($chr,$location-3,$frame_offset,$strand,$table).($aapos-1)."_".
|
|
432 getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table);
|
|
433 return "p.".$insAAs.$aapos."ins".$newAAs;
|
|
434 }
|
|
435 # deletion
|
|
436 elsif(length($newAAs) == 0){
|
|
437 my $delAAs;
|
|
438 if(length($origAAs) == 1){
|
|
439 $delAAs = getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos; # single AA deletion
|
|
440 }
|
|
441 else{ # deleting a stretch
|
|
442 if($strand eq "+"){
|
|
443 my $endPoint = $location+$delLength-1;
|
|
444 $delAAs = getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos."_".
|
|
445 getAAFromSeqIndex($chr,$endPoint,$frame_offset,$strand,$table).($aapos+int(($delLength-1)/3));
|
|
446 }
|
|
447 else{
|
|
448 my $endPoint = $location-$delLength+1;
|
|
449 $delAAs = getAAFromSeqIndex($chr,$endPoint,$frame_offset,$strand,$table).($aapos-int(($delLength-1)/3))."_".
|
|
450 getAAFromSeqIndex($chr,$location,$frame_offset,$strand,$table).$aapos;
|
|
451 }
|
|
452 }
|
|
453 return "p.".$delAAs."del";
|
|
454 }
|
|
455 else{
|
|
456 # substitution
|
|
457 if(length($origAAs) == 1 and length($newAAs) == 1){
|
|
458 return "p.".$origAAs.$aapos.$newAAs;
|
|
459 }
|
|
460 # indel
|
|
461 elsif(length($origAAs) != 1){
|
|
462 # convert ref stretch into range syntax
|
|
463 if($strand eq "+"){
|
|
464 $origAAs = substr($origAAs, 0, 1).$aapos."_".substr($origAAs, -1).($aapos+length($origAAs)-1);
|
|
465 }
|
|
466 else{
|
|
467 $origAAs = substr($origAAs, 0, 1).($aapos-length($origAAs)+1)."_".substr($origAAs, -1).$aapos;
|
|
468 }
|
|
469 }
|
|
470 return "p.".$origAAs."delins".$newAAs;
|
|
471 }
|
|
472 return ("NA", "");
|
|
473 }
|
|
474
|
|
475 sub z2p{
|
|
476 if(not defined $zed){
|
|
477 $zed = new Statistics::Zed;
|
|
478 }
|
|
479 my $p = $zed->z2p(value => $_[0]);
|
|
480 return $p < 0.0000000001 ? 0 : $p;
|
|
481 }
|
|
482 sub gq2p{
|
|
483 return $_[0] > 200 ? 0 : 10**($_[0]/-10);
|
|
484 }
|
|
485
|
|
486 my ($multi_phased, $min_depth, $flanking_bases, $dbsnp, $internal_snp, $genename_bed_file, $dir_1000G, $dir_esp6500, $min_pvalue, $mappability_file, $reference_file, $samtools_phasing_file, $exons_file, $input_file, $output_file, $cnv_file, $dgv_file, $which_chr, $enrichment_regions_file, $rare_variant_prop);
|
|
487 $multi_phased = 0;
|
|
488 $min_depth = 2;
|
|
489 $flanking_bases = 30;
|
|
490 $min_pvalue = 0.01;
|
|
491 $min_prop = 0.14;
|
|
492 $rare_variant_prop = 0.05;
|
|
493 $input_file = "-"; # STDIN by default
|
|
494 $output_file = "-"; # STDOUT by default
|
|
495 $default_transl_table = "1"; # assumes NCBI 'Standard' table, unless it is an argument to the script...
|
|
496 &GetOptions("d=i" => \$min_depth,
|
|
497 "f=i" => \$flanking_bases,
|
|
498 "s=s" => \$dbsnp,
|
|
499 "t=s" => \$dir_1000G,
|
|
500 "n=s" => \$dir_esp6500,
|
|
501 "u=s" => \$internal_snp,
|
|
502 "q" => \$quiet,
|
|
503 "p=f" => \$min_pvalue,
|
|
504 "h=f" => \$min_prop,
|
|
505 "m=s" => \$mappability_file,
|
|
506 "r=s" => \$reference_file,
|
|
507 "z=s" => \$samtools_phasing_file,
|
|
508 "e=s" => \$exons_file,
|
|
509 "i=s" => \$input_file,
|
|
510 "c=s" => \$cnv_file,
|
|
511 "g=s" => \$dgv_file,
|
|
512 "b=s" => \$genename_bed_file,
|
|
513 "w=s" => \$which_chr,
|
|
514 "o=s" => \$output_file,
|
|
515 "a=i" => \$default_transl_table,
|
|
516 "v=f" => \$rare_variant_prop,
|
|
517 "x=s" => \$enrichment_regions_file); # if enrichment regions are specified, variants without a transcript model but in these ranges will be reported
|
|
518
|
|
519 if(($input_file ne "/dev/null" and not defined $reference_file) or
|
|
520 not defined $exons_file or
|
|
521 (defined $cnv_file and not defined $dgv_file)){
|
|
522 die "Usage: $0 [-v(ersion)] [-q(uiet)] [-w(hich) contig_to_report (default is all)] [-d(epth of variant reads req'd) #] [-v(ariant max freq to count as rare)] [-f(lanking exon bases to report) #] [-p(robability of random genotype, maximum to report) 0.#]\n",
|
|
523 " [-h(et proportion of variant reads, minimum to report) 0.#] [-c(opy number) variants_file.bed -g(enomic structural) variants_control_db.txt.gz] [-z file_containing_samtools_phase_output.txt]\n",
|
|
524 " [-t(housand) genomes_integrated_vcfs_gz_dir] [-n ESP6500_dir] [-u(ser) specified_population.vcf.gz] [-m(appability) crg_file.bed]\n",
|
|
525 " [-x enrichment_regions_file.bed] [-a(mino) acid translation table number from NCBI]\n",
|
|
526 " [-i(nput) genotypes.vcf <-r(eference) sequence_file.fasta>] [-o(utput) hgvs_file.tsv] [-s(np) database_from_ncbi.vcf.gz]\n",
|
|
527 " <-b(ed) file of named gene regions.bed> <-e(xons) file.gtf>\n\n",
|
|
528 "Input gz files must be indexed with Tabix.\nDefault input is STDIN, default output is STDOUT. Note: if -c is specified, polyploidies are are assume to be proximal. Other defaults: -d 2, -v 0.05, -f 30, -p 0.01, -h 0.14 -a 1\nReference sequence is not strictly necessary if only CNV are being annotated.\n";
|
|
529 }
|
|
530
|
|
531 print STDERR "Considering $flanking_bases flanking bases for variants as well\n" unless $quiet;
|
|
532
|
|
533 $codonTable = new Bio::Tools::CodonTable(id => $default_transl_table);
|
|
534
|
|
535 my %enrichment_regions;
|
|
536 # Note, we assume the regions are non-overlapping
|
|
537 if(defined $enrichment_regions_file){
|
|
538 print STDERR "Loading enrichment regions...\n" unless $quiet;
|
|
539 open(BED, $enrichment_regions_file)
|
|
540 or die "Cannot open $enrichment_regions_file for reading: $!\n";
|
|
541 while(<BED>){
|
|
542 chomp;
|
|
543 my @F = split /\t/, $_;
|
|
544 $enrichment_regions{$F[0]} = [] if not exists $enrichment_regions{$F[0]};
|
|
545 push @{$enrichment_regions{$F[0]}}, [$F[1], $F[2]];
|
|
546 }
|
|
547 close(BED);
|
|
548 }
|
|
549 for my $chr (keys %enrichment_regions){ # sort by start
|
|
550 $enrichment_regions{$chr} = [sort {$a->[0] <=> $b->[0]} @{$enrichment_regions{$chr}}];
|
|
551 }
|
|
552
|
|
553 if(defined $reference_file){
|
|
554 print STDERR "Scanning reference FastA info\n" unless $quiet;
|
|
555 if(not -e $reference_file){
|
|
556 die "Reference FastA file ($reference_file) does not exist.\n";
|
|
557 }
|
|
558 if(not -e $reference_file.".fai" and not -w dirname($reference_file)){
|
|
559 die "Reference FastA file ($reference_file) is not indexed, and the directory is not writable.\n";
|
|
560 }
|
|
561 $fasta_index = Bio::DB::Sam::Fai->load($reference_file);
|
|
562 }
|
|
563
|
|
564 my %chr2mappability;
|
|
565 if(defined $mappability_file){
|
|
566 print STDERR "Reading in mappability data\n" unless $quiet;
|
|
567 my ($nmer) = $mappability_file =~ /(\d+).*?$/;
|
|
568 die "Cannot determine nmer from nmer file name $mappability_file, aborting\n" unless $nmer;
|
|
569 open(MAP, $mappability_file)
|
|
570 or die "Cannot open mappability data file $mappability_file for reading: $!\n";
|
|
571 <MAP>; # header
|
|
572 while(<MAP>){
|
|
573 next if /^#/;
|
|
574 chomp;
|
|
575 my @F = split /\t/, $_;
|
|
576 my $x = int(1/$F[3]+0.5);
|
|
577 $chr2mappability{$F[0]} = Set::IntervalTree->new() if not exists $chr2mappability{$F[0]};
|
|
578 $chr2mappability{$F[0]}->insert("non-unique mapping region (x$x)", $F[1], $F[2]+$nmer-1);
|
|
579 }
|
|
580 close(MAP);
|
|
581 }
|
|
582
|
|
583 # Is phasing data provided?
|
|
584 if(defined $samtools_phasing_file){
|
|
585 print STDERR "Reading in phasing data\n" unless $quiet;
|
|
586 open(PHASE, $samtools_phasing_file)
|
|
587 or die "Cannot open phasing data file $samtools_phasing_file for reading: $!\n";
|
|
588 my $phase_range;
|
|
589 while(<PHASE>){
|
|
590 if(/^PS/){
|
|
591 chomp;
|
|
592 my @F = split /\t/, $_;
|
|
593 $phase_range = "$F[2]-$F[3]";
|
|
594 }
|
|
595 if(/^M[12]/){
|
|
596 chomp;
|
|
597 my @F = split /\t/, $_;
|
|
598 #ignore strange cases where haplotype reference has no cases (weird samtools call)
|
|
599 next if $F[9] == 0 or $F[7] == 0;
|
|
600 my $chr = $F[1];
|
|
601 next if defined $which_chr and not $chr eq $which_chr;
|
|
602 my $pos = $F[3];
|
|
603 #print STDERR "Recording phase for $chr:$pos:$F[4] , $chr:$pos:$F[5] as A-$chr:$phase_range and B-$chr:$phase_range\n" if $pos == 12907379;
|
|
604 if(($F[10]+$F[8])/($F[9]+$F[7]) >= $min_prop){ # error meets reporting threshold
|
|
605 $chr2caveats{"$chr:$pos"} .= "; " if exists $chr2caveats{"$chr:$pos"};
|
|
606 $chr2caveats{"$chr:$pos"} .= "inconsistent haplotype phasing";
|
|
607 }
|
|
608 else{ # appears to be a genuine phasing
|
|
609 $chr2phase{"$chr:$pos:$F[4]"} = "A-$chr:$phase_range"; # grouping for haplotype
|
|
610 $chr2phase{"$chr:$pos:$F[5]"} = "B-$chr:$phase_range"; # grouping for haplotype
|
|
611 }
|
|
612 }
|
|
613 }
|
|
614 close(PHASE);
|
|
615 }
|
|
616
|
|
617 # Check the VCF file to see if contains phase data
|
|
618 open(VCFIN, $input_file)
|
|
619 or die "Cannot open $input_file for reading: $!\n";
|
|
620 my $phase_chr = "";
|
|
621 my @phase_dataA;
|
|
622 my @phase_dataB;
|
|
623 while(<VCFIN>){
|
|
624 if(/^\s*(?:#|$)/){ # blank or hash comment
|
|
625 next;
|
|
626 }
|
|
627 my @F = split /\t/, $_;
|
|
628 next if exists $chr2caveats{"$F[0]:$F[1]"} and $chr2caveats{"$F[0]:$F[1]"} =~ /inconsistent haplotype phasing/;
|
|
629 # | indicates phased
|
|
630 if($F[8] =~ m(^(\d+)\|(\d+):)){
|
|
631 next if $1 eq $2; # not useful to us (actually would mess up phase combining later on), but is provided sometimes
|
|
632 # start of a phasing block
|
|
633 if($phase_chr eq ""){
|
|
634 $phase_chr = $F[0];
|
|
635 }
|
|
636 my @vars = split /,/, $F[4];
|
|
637 if($1 > @vars){
|
|
638 die "Invalid VCF file (line #$.): First haplotype listed as $1, but only ", scalar(@vars), " variants were provided (", join(",", @vars), "\n";
|
|
639 }
|
|
640 if($2 > @vars){
|
|
641 die "Invalid VCF file (line #$.): Second haplotype listed as $1, but only ", scalar(@vars), " variants were provided (", join(",", @vars), "\n";
|
|
642 }
|
|
643 unshift @vars, $F[3];
|
|
644 push @phase_dataA, [$F[1], $vars[$1]];
|
|
645 push @phase_dataB, [$F[1], $vars[$2]];
|
|
646 }
|
|
647 # non phased het call, ends any phasing block there might be
|
|
648 elsif($F[8] =~ m(^0/1)){
|
|
649 # Did we just finish a phased block? If so, output it.
|
|
650 if(@phase_dataA > 1){
|
|
651 my $phase_def = "G-$phase_chr:".$phase_dataA[0]->[0]."-".$phase_dataA[$#phase_dataA]->[0];
|
|
652 for my $d (@phase_dataA){
|
|
653 my ($p, $v) = @$d;
|
|
654 if(exists $chr2phase{"$phase_chr:$p:$v"}){
|
|
655 $chr2phase{"$phase_chr:$p:$v"} .= ",$phase_def";
|
|
656 $multi_phased ||= 1;
|
|
657 }
|
|
658 else{
|
|
659 $chr2phase{"$phase_chr:$p:$v"} = $phase_def;
|
|
660 }
|
|
661 }
|
|
662 $phase_def = "H-$phase_chr:".$phase_dataB[0]->[0]."-".$phase_dataB[$#phase_dataB]->[0];
|
|
663 for my $d (@phase_dataB){
|
|
664 my ($p, $v) = @$d;
|
|
665 if(exists $chr2phase{"$phase_chr:$p:$v"}){
|
|
666 $chr2phase{"$phase_chr:$p:$v"} = ",$phase_def";
|
|
667 $multi_phased ||= 1;
|
|
668 }
|
|
669 else{
|
|
670 $chr2phase{"$phase_chr:$p:$v"} = $phase_def;
|
|
671 }
|
|
672 }
|
|
673 }
|
|
674 if($phase_chr ne ""){
|
|
675 $phase_chr = "";
|
|
676 @phase_dataA = ();
|
|
677 @phase_dataB = ();
|
|
678 }
|
|
679 }
|
|
680 }
|
|
681
|
|
682 print STDERR "Reading in feature GTF data..." unless $quiet;
|
|
683 my %feature_range; # chr => transcript_id => [[genomic_exon_start,genomic_exon_end,cdna_start_pos],...]
|
|
684 my %feature_intervaltree; # chr => transcript_id => [[genomic_exon_start,genomic_exon_end,cdna_start_pos],...]
|
|
685 my %feature_strand; # transcript_id => +|-
|
|
686 my $feature_count = 0;
|
|
687 my %feature_min;
|
|
688 my %feature_max;
|
|
689 my %feature_cds_min;
|
|
690 my %feature_cds_max;
|
|
691 my %feature_contig;
|
|
692 my %feature_length;
|
|
693 my %feature_type;
|
|
694 my %feature_transl_table; # note alternate translation table usage
|
|
695 my %chr_read;
|
|
696 open(GTF, $exons_file)
|
|
697 or die "Cannot open $exons_file for reading: $!\n";
|
|
698 while(<GTF>){
|
|
699 next if /^\s*#/;
|
|
700 my @fields = split /\t/, $_;
|
|
701 next if defined $which_chr and $fields[0] ne $which_chr and "chr$fields[0]" ne $which_chr and $fields[0] ne "chr$which_chr";
|
|
702
|
|
703 if($fields[2] eq "exon" or $fields[2] eq "CDS"){
|
|
704 next unless $fields[$#fields] =~ /transcript_id \"(.*?)\"/o;
|
|
705 my $parent = $1;
|
|
706 if(not $quiet and not exists $chr_read{$fields[0]}){
|
|
707 print STDERR " $fields[0]";
|
|
708 $chr_read{$fields[0]} = 1;
|
|
709 }
|
|
710 if(not exists $feature_strand{$parent}){
|
|
711 $feature_strand{$parent} = $fields[6];
|
|
712 $feature_contig{$parent} = $fields[0];
|
|
713 if($fields[$#fields] =~ /transcript_type \"(.*?)\"/){
|
|
714 $feature_type{$parent} = $1;
|
|
715 }
|
|
716 else{
|
|
717 $feature_type{$parent} = "NA";
|
|
718 }
|
|
719 }
|
|
720 if($fields[2] eq "CDS"){
|
|
721 #print STDERR "CDS value for $parent is $fields[2]..$fields[3]\n";
|
|
722 if(not exists $feature_cds_min{$parent} or $fields[3] < $feature_cds_min{$parent}){
|
|
723 $feature_cds_min{$parent} = $fields[3];
|
|
724 }
|
|
725 if(not exists $feature_cds_max{$parent} or $fields[4] > $feature_cds_max{$parent}){
|
|
726 $feature_cds_max{$parent} = $fields[4];
|
|
727 }
|
|
728 if($fields[$#fields] =~ /transl_table \"(\d+)\"/){
|
|
729 $feature_transl_table{$parent} = $1; #assume one translation table per CDS, which should be reasonable
|
|
730 }
|
|
731 while($fields[$#fields] =~ /transl_except \"pos:(\S+?),aa:(\S+?)\"/g){
|
|
732 my $pos = $1;
|
|
733 my $new_aa = $2; # needs to change from three letter code to 1
|
|
734 if($new_aa =~ /^ter/i){ # can be funny so have special case (allows TERM, etc.)
|
|
735 $new_aa = "*";
|
|
736 }
|
|
737 elsif(length($new_aa) == 3){
|
|
738 $new_aa = Bio::SeqUtils->new()->seq3in($new_aa);
|
|
739 }
|
|
740 if($pos =~ /^(\d+)\.\.(\d+)/){
|
|
741 for my $p ($1..$2){
|
|
742 $transl_except{"$fields[0]:$p"} = $new_aa;
|
|
743 }
|
|
744 }
|
|
745 else{
|
|
746 $transl_except{"$fields[0]:$pos"} = $new_aa;
|
|
747 }
|
|
748 }
|
|
749 next;
|
|
750 }
|
|
751 if(not exists $feature_min{$parent} or $fields[3] < $feature_min{$parent}){
|
|
752 $feature_min{$parent} = $fields[3];
|
|
753 }
|
|
754 if(not exists $feature_max{$parent} or $fields[4] > $feature_max{$parent}){
|
|
755 $feature_max{$parent} = $fields[4];
|
|
756 }
|
|
757
|
|
758 $feature_count++;
|
|
759 if(not exists $feature_range{$fields[0]}){
|
|
760 $feature_range{$fields[0]} = {}; # Chr => {parentID => [start,stop]}
|
|
761 $feature_intervaltree{$fields[0]} = Set::IntervalTree->new();
|
|
762 }
|
|
763 if(not exists $feature_range{$fields[0]}->{$parent}){
|
|
764 $feature_range{$fields[0]}->{$parent} = [];
|
|
765 }
|
|
766 push @{$feature_range{$fields[0]}->{$parent}}, [$fields[3],$fields[4]];
|
|
767 $feature_intervaltree{$fields[0]}->insert($parent, $fields[3], $fields[4]+1); # ranges need to have positive length for module to work properly
|
|
768 $feature_length{$parent} += $fields[4]-$fields[3]+1;
|
|
769 }
|
|
770 }
|
|
771 close(GTF);
|
|
772 print STDERR "\nFound $feature_count exons on ", scalar(keys %feature_range), " contigs in the GTF file\n" unless $quiet;
|
|
773
|
|
774 for my $contig (keys %feature_range){
|
|
775 for my $parent (keys %{$feature_range{$contig}}){
|
|
776 # sort by subrange start
|
|
777 my @feature_ranges = sort {$a->[0] <=> $b->[0]} @{$feature_range{$contig}->{$parent}};
|
|
778 $feature_range{$contig}->{$parent} = \@feature_ranges;
|
|
779 $feature_range{"chr".$contig}->{$parent} = \@feature_ranges if not $contig =~ /^chr/;
|
|
780 $feature_range{$1}->{$parent} = \@feature_ranges if $contig =~ /^chr(\S+)/;
|
|
781 }
|
|
782 }
|
|
783
|
|
784 # Calculate the cDNA position of the leftmost (reference strand) base for each exon
|
|
785 for my $contig (keys %feature_range){
|
|
786 for my $parent (keys %{$feature_range{$contig}}){
|
|
787 my @feature_ranges = @{$feature_range{$contig}->{$parent}};
|
|
788 if($feature_strand{$parent} eq "-"){
|
|
789 # set up utr offset for correct CDS coordinates
|
|
790 my $feature_offset = 0;
|
|
791 for(my $i = $#feature_ranges; $i >= 0; $i--){
|
|
792 last if not $feature_cds_max{$parent};
|
|
793 # exon is completely 5' of the start
|
|
794 if($feature_ranges[$i]->[0] > $feature_cds_max{$parent}){
|
|
795 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
796 }
|
|
797 # exon with the cds start
|
|
798 elsif($feature_ranges[$i]->[1] >= $feature_cds_max{$parent} and
|
|
799 $feature_ranges[$i]->[0] <= $feature_cds_max{$parent}){
|
|
800 $feature_offset += $feature_cds_max{$parent} - $feature_ranges[$i]->[1];
|
|
801 last;
|
|
802 }
|
|
803 else{
|
|
804 die "The CDS for $parent (on negative strand) ends downstream ",
|
|
805 "($feature_cds_max{$parent}) of the an exon",
|
|
806 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n";
|
|
807 }
|
|
808 }
|
|
809 for(my $i = $#feature_ranges; $i >= 0; $i--){
|
|
810 $feature_offset += $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
811 $feature_ranges[$i]->[2] = $feature_offset-1;
|
|
812 }
|
|
813 }
|
|
814 else{ # positive strand
|
|
815 # set up utr offset for correct CDS coordinates
|
|
816 my $feature_offset = 0;
|
|
817 for(my $i = 0; $i <= $#feature_ranges; $i++){
|
|
818 last if not $feature_cds_min{$parent};
|
|
819 # All 5' utr exon
|
|
820 if($feature_ranges[$i]->[1] < $feature_cds_min{$parent}){
|
|
821 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
822 }
|
|
823 # exon with the cds start
|
|
824 elsif($feature_ranges[$i]->[1] >= $feature_cds_min{$parent} and
|
|
825 $feature_ranges[$i]->[0] <= $feature_cds_min{$parent}){
|
|
826 $feature_offset -= $feature_cds_min{$parent} - $feature_ranges[$i]->[0];
|
|
827 last;
|
|
828 }
|
|
829 else{
|
|
830 die "The CDS for $parent starts upstream ($feature_cds_min{$parent}) of the first exon",
|
|
831 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n";
|
|
832 }
|
|
833 }
|
|
834 # assign cDNA coords for each exon to the third array element
|
|
835 for(my $i = 0; $i <= $#feature_ranges; $i++){
|
|
836 $feature_ranges[$i]->[2] = $feature_offset;
|
|
837 $feature_offset += $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
838 }
|
|
839 }
|
|
840 }
|
|
841 }
|
|
842
|
|
843 print STDERR "Reading in gene name definitions...\n" unless $quiet;
|
|
844 die "Data file $genename_bed_file does not exist, aborting.\n" if not -e $genename_bed_file;
|
|
845 my %gene_ids;
|
|
846 open(TAB, $genename_bed_file)
|
|
847 or die "Cannot open gene name BED file $genename_bed_file for reading: $!\n";
|
|
848 while(<TAB>){
|
|
849 chomp;
|
|
850 # format should be "chr start stop gene_name ..."
|
|
851 my @fields = split /\t/, $_;
|
|
852 next if $#fields < 3;
|
|
853 my $c = $fields[0];
|
|
854 if(not exists $gene_ids{$c}){
|
|
855 $gene_ids{$c} = Set::IntervalTree->new();
|
|
856 }
|
|
857 $gene_ids{$c}->insert($fields[3], $fields[1], $fields[2]);
|
|
858 }
|
|
859
|
|
860 # Print output header
|
|
861 open(OUT, ">$output_file")
|
|
862 or die "Cannot open $output_file for writing: $!\n";
|
|
863
|
|
864 print OUT join("\t", "Feature type", "Transcript length", "Selected transcript", "Transcript HGVS", "Strand", "Chr", "DNA From", "DNA To", "Zygosity", "P-value", "Variant Reads", "Total Reads",
|
|
865 "Ref base", "Obs base", "Pop. freq. source", "Pop. freq.", "Variant DB ID"), "\t",
|
|
866 ($internal_snp ? "Internal pop. freq.\t" : ""),
|
|
867 join("\t", "Protein HGVS", "Closest exon junction (AA coding variants)", "Gene Name", "Caveats", "Phase", "Num rare variants in gene (MAF <= $rare_variant_prop)", "Num rare coding and splice site variants in gene (MAF <= $rare_variant_prop)"),"\n";
|
|
868
|
|
869 # If there is CNV data, load it.
|
|
870 # BED columns should be chr start stop caveats ploidy . ignored ignored r,g,b
|
|
871 # The dot means the strand doesn't matter.
|
|
872 # where the first five fields are required, others optional
|
|
873 # where r,g,b is overloaded with father,mother ploidies and "b" is integer representing affected status logical AND (father bit mask 1, mother bit mask 2)
|
|
874 if(defined $cnv_file){
|
|
875 print STDERR "Reading in CNV data...\n" unless $quiet;
|
|
876 open(CNV, $cnv_file)
|
|
877 or die "Cannot open $cnv_file for reading: $!\n";
|
|
878 while(<CNV>){
|
|
879 chomp;
|
|
880 my @F = split /\t/, $_, -1;
|
|
881 if(@F < 5){
|
|
882 print STDERR "Skipping unparseable line ($cnv_file #$.): $_\n";
|
|
883 next;
|
|
884 }
|
|
885 my $ploidy = $F[4];
|
|
886 my $cnv_chr = $F[0];
|
|
887 next if defined $which_chr and $cnv_chr ne $which_chr and "chr$cnv_chr" ne $which_chr and $cnv_chr ne "chr$which_chr";
|
|
888 my $cnv_start = $F[1];
|
|
889 my $cnv_end = $F[2];
|
|
890 my $p_value = "NA";
|
|
891 if($F[3] =~ s/p-value=(\S+?)(?:;|$)//){
|
|
892 $p_value = $1;
|
|
893 next if $min_pvalue < $p_value;
|
|
894 }
|
|
895
|
|
896 # Report a variant line for each gene that is found in this CNV
|
|
897 my $target_parents = $feature_intervaltree{$cnv_chr}->fetch($cnv_start, $cnv_end+1);
|
|
898
|
|
899 my $caveats = "";
|
|
900 if(@F == 9){
|
|
901 my @parents_ploidy = split /,/, $F[8];
|
|
902 if($parents_ploidy[2] == 0){ # neither parent affected
|
|
903 if($ploidy < $parents_ploidy[0] and $ploidy < $parents_ploidy[1]){
|
|
904 if($ploidy > 2){
|
|
905 $caveats = "Polyploidy is less severe than in either unaffected parents";
|
|
906 }
|
|
907 # else: no caveats, this offspring has fewer copies than normally observed, or in unaffected parents
|
|
908 elsif($ploidy < 2){
|
|
909 if($parents_ploidy[0] == 2 and $parents_ploidy[1] == 2){
|
|
910 $caveats = "De novo copy loss, unaffected parents are diploid";
|
|
911 }
|
|
912 else{
|
|
913 $caveats = "Copy loss is greater than in either unaffected parent";
|
|
914 }
|
|
915 }
|
|
916 }
|
|
917 elsif($ploidy >= $parents_ploidy[0] and $ploidy <= $parents_ploidy[1] or
|
|
918 $ploidy >= $parents_ploidy[1] and $ploidy <= $parents_ploidy[0]){
|
|
919 $caveats = "Aneuploidy likely inherited from an unaffected parent";
|
|
920 }
|
|
921 elsif($ploidy > $parents_ploidy[0] and $ploidy > $parents_ploidy[1]){
|
|
922 if($parents_ploidy[0] > 2){
|
|
923 if($parents_ploidy[1] > 2){
|
|
924 $caveats = "Lower polyploidy already exists in both unaffected parents";
|
|
925 }
|
|
926 else{
|
|
927 $caveats = "Lower polyploidy already exists in unaffected father";
|
|
928 }
|
|
929 }
|
|
930 else{
|
|
931 if($parents_ploidy[1] > 2){
|
|
932 $caveats = "Lower polyploidy already exists in unaffected mother";
|
|
933 }
|
|
934 # else no caveats, because both parents are "normal", yet we have polyploidy in the offspring
|
|
935 else{
|
|
936 $caveats = "De novo polyploidy, unaffected parents are diploid";
|
|
937 }
|
|
938 }
|
|
939 }
|
|
940 # else
|
|
941 else{
|
|
942 die "Oops! Error in program logic...how did we get here (unaffected parents)? $_";
|
|
943 }
|
|
944 }
|
|
945 elsif($parents_ploidy[2] == 1){ # father affected
|
|
946 if($ploidy == $parents_ploidy[1]){ # just like unaffected Mom
|
|
947 if($ploidy > 2){
|
|
948 if($ploidy == $parents_ploidy[0]){
|
|
949 $caveats = "Same polyploidy present in both affected and unaffected parents";
|
|
950 }
|
|
951 else{
|
|
952 $caveats = "Polyploidy inherited from unaffected mother";
|
|
953 }
|
|
954 }
|
|
955 elsif($ploidy < 2){
|
|
956 if($ploidy == $parents_ploidy[0]){
|
|
957 $caveats = "Same copy loss in both affected and unaffected parents";
|
|
958 }
|
|
959 else{
|
|
960 $caveats = "Copy loss is shared with unaffected mother";
|
|
961 }
|
|
962 }
|
|
963 else{
|
|
964 if($ploidy == $parents_ploidy[0]){
|
|
965 # Why was this even reported? parents and child have diploid status...
|
|
966 next;
|
|
967 }
|
|
968 $caveats = "Diploidy is shared with unaffected mother";
|
|
969 }
|
|
970 }
|
|
971 elsif($ploidy > 2){ # polyploidy
|
|
972 if($parents_ploidy[0] == 2){
|
|
973 if($parents_ploidy[1] > 2){
|
|
974 $caveats = "Unaffected mother has polyploidy (".$parents_ploidy[1]."x), but affected father is diploid";
|
|
975 }
|
|
976 elsif($parents_ploidy[1] == 2){
|
|
977 $caveats = "Both unaffected mother and affected father are diploid";
|
|
978 }
|
|
979 else{
|
|
980 $caveats = "Affected father is diploid, unaffected mother has copy loss (".$parents_ploidy[1]."x)";
|
|
981 }
|
|
982 }
|
|
983 elsif($parents_ploidy[0] < 2){
|
|
984 $caveats = "Polyploidy found, but affected father had copy loss (".$parents_ploidy[0]."x)";
|
|
985 }
|
|
986 elsif($ploidy < $parents_ploidy[1]){
|
|
987 $caveats = "Polyploidy is less severe than in unaffected mother (".$parents_ploidy[1]."x), or affected father (".$parents_ploidy[0]."x)";
|
|
988 }
|
|
989 # past here the ploidy is great than in the unaffected mother
|
|
990 elsif($parents_ploidy[1] < 2){
|
|
991 $caveats = "Polyploidy is also severe in affected father (".$parents_ploidy[0]."x), but unaffected mother actually had copy loss (". $parents_ploidy[1]. "x)";
|
|
992 }
|
|
993 elsif($parents_ploidy[1] == 2){
|
|
994 $caveats = "Polyploidy is also severe in affected father (".$parents_ploidy[0]."x), and mother is diploid";
|
|
995 }
|
|
996 elsif($ploidy < $parents_ploidy[0]){
|
|
997 $caveats = "Polyploidy is less severe than in affected father (".$parents_ploidy[0]."x), but more severe than unaffected mother (". $parents_ploidy[1]. "x)";
|
|
998 }
|
|
999 elsif($ploidy > $parents_ploidy[0]){
|
|
1000 $caveats = "Polyploidy is more severe than in affected father (".$parents_ploidy[0]."x)";
|
|
1001 }
|
|
1002 else{
|
|
1003 $caveats = "Polyploidy is as severe as in affected father";
|
|
1004 }
|
|
1005 }
|
|
1006 elsif($ploidy == 2){
|
|
1007 # Don't report diploid status, any funny recombination should show up in large indel analysis
|
|
1008 next;
|
|
1009 }
|
|
1010 else{ # copies < 2
|
|
1011 if($ploidy == $parents_ploidy[0]){
|
|
1012 if($ploidy > $parents_ploidy[1]){
|
|
1013 $caveats = "Copy loss is the same as affected father, but less than unaffected mother (". $parents_ploidy[1]. "x)";
|
|
1014 }
|
|
1015 else{
|
|
1016 $caveats = "Copy loss is as severe as in affected father";
|
|
1017 }
|
|
1018 }
|
|
1019 elsif($ploidy > $parents_ploidy[0]){
|
|
1020 if($ploidy > $parents_ploidy[1]){
|
|
1021 if($parents_ploidy[1] == 0 and $parents_ploidy[0] == 0){
|
|
1022 $caveats = "Poor mapping, or Mendelian inheritence violation is severe: no copies of region in either parent, but present in offspring";
|
|
1023 }
|
|
1024 elsif($ploidy == 2){
|
|
1025 next; # child got best of both parents, ignore from CNV standpoint (may still have SNPs of course, or translocation, etc.)
|
|
1026 }
|
|
1027 else{
|
|
1028 $caveats = "Copy loss is less severe than in unaffected mother (".$parents_ploidy[1]."x), or affected father (".$parents_ploidy[0]."x)";
|
|
1029 }
|
|
1030 }
|
|
1031 # else: child has less copies than unaffected mom, but more than affected Dad
|
|
1032 else{
|
|
1033 if($parents_ploidy[1] > 2){
|
|
1034 $caveats = "Copy loss was more severe in affected father (".$parents_ploidy[0]."x), but unaffected mother had polyploidy (".$parents_ploidy[1]."x)";
|
|
1035 }
|
|
1036 elsif($parents_ploidy[1] == 2){
|
|
1037 $caveats = "Copy loss was more severe in affected father (".$parents_ploidy[0]."x), but unaffected mother was diploid";
|
|
1038 }
|
|
1039 else{ # unaffected has loss
|
|
1040 $caveats = "Copy loss is more severe than unaffect mother (".$parents_ploidy[1]."x), but less severe than affected father (".$parents_ploidy[0]."x)";
|
|
1041 }
|
|
1042 }
|
|
1043 }
|
|
1044 # past here, ploidy is less than affected father
|
|
1045 elsif($parents_ploidy[1] > 2){
|
|
1046 $caveats = "Copy loss is more severe than affected father (".$parents_ploidy[0]."x), and unaffected mother had polyploidy (".$parents_ploidy[1]."x)";
|
|
1047 }
|
|
1048 elsif($parents_ploidy[1] == 2){
|
|
1049 $caveats = "Copy loss is more severe than in affected father (".$parents_ploidy[0]."x)";
|
|
1050 }
|
|
1051 else{
|
|
1052 $caveats = "Copy loss is more severe than in both unaffect mother (".$parents_ploidy[1]."x), and affected father (".$parents_ploidy[0]."x)";
|
|
1053 }
|
|
1054 }
|
|
1055 }
|
|
1056 elsif($parents_ploidy[2] == 2){ # mother affected
|
|
1057 if($ploidy == $parents_ploidy[0]){ # just like unaffected Dad
|
|
1058 if($ploidy > 2){
|
|
1059 if($ploidy == $parents_ploidy[1]){
|
|
1060 $caveats = "Same polyploidy present in both affected and unaffected parents";
|
|
1061 }
|
|
1062 else{
|
|
1063 $caveats = "Polyploidy inherited from unaffected father";
|
|
1064 }
|
|
1065 }
|
|
1066 elsif($ploidy < 2){
|
|
1067 if($ploidy == $parents_ploidy[1]){
|
|
1068 $caveats = "Same copy loss in both affected and unaffected parents";
|
|
1069 }
|
|
1070 else{
|
|
1071 $caveats = "Copy loss is shared with unaffected father";
|
|
1072 }
|
|
1073 }
|
|
1074 else{
|
|
1075 if($ploidy == $parents_ploidy[1]){
|
|
1076 # Why was this even reported? parents and child have diploid status...
|
|
1077 next;
|
|
1078 }
|
|
1079 $caveats = "Diploidy is shared with unaffected father";
|
|
1080 }
|
|
1081 }
|
|
1082 elsif($ploidy > 2){ # polyploidy
|
|
1083 if($parents_ploidy[1] == 2){
|
|
1084 if($parents_ploidy[0] > 2){
|
|
1085 $caveats = "Unaffected father has polyploidy (".$parents_ploidy[0]."x), but affected mother is diploid";
|
|
1086 }
|
|
1087 elsif($parents_ploidy[0] == 2){
|
|
1088 $caveats = "Both unaffected father and affected mother are diploid";
|
|
1089 }
|
|
1090 else{
|
|
1091 $caveats = "Affected mother is diploid, unaffected father has copy loss (".$parents_ploidy[1]."x)";
|
|
1092 }
|
|
1093 }
|
|
1094 elsif($parents_ploidy[1] < 2){
|
|
1095 $caveats = "Polyploidy found, but affected mother had copy loss (".$parents_ploidy[1]."x)";
|
|
1096 }
|
|
1097 elsif($ploidy < $parents_ploidy[0]){
|
|
1098 $caveats = "Polyploidy is less severe than in unaffected father (".$parents_ploidy[0]."x), or affected mother (".$parents_ploidy[1]."x)";
|
|
1099 }
|
|
1100 # past here the ploidy is great than in the unaffected father
|
|
1101 elsif($parents_ploidy[0] < 2){
|
|
1102 $caveats = "Polyploidy is also severe in affected mother (".$parents_ploidy[1]."x), but unaffected father actually had copy loss (". $parents_ploidy[0]. "x)";
|
|
1103 }
|
|
1104 elsif($parents_ploidy[0] == 2){
|
|
1105 $caveats = "Polyploidy is also severe in affected mother (".$parents_ploidy[1]."x), and unaffected father is diploid";
|
|
1106 }
|
|
1107 elsif($ploidy < $parents_ploidy[1]){
|
|
1108 $caveats = "Polyploidy is less severe than in affected mother (".$parents_ploidy[1]."x), but more severe than unaffected father (". $parents_ploidy[0]. "x)";
|
|
1109 }
|
|
1110 elsif($ploidy > $parents_ploidy[1]){
|
|
1111 $caveats = "Polyploidy is more severe than in affected mother (".$parents_ploidy[1]."x)";
|
|
1112 }
|
|
1113 else{
|
|
1114 $caveats = "Polyploidy is as severe as in affected mother";
|
|
1115 }
|
|
1116 }
|
|
1117 elsif($ploidy == 2){
|
|
1118 # Don't report diploid status, any funny recombination should show up in large indel analysis
|
|
1119 next;
|
|
1120 }
|
|
1121 else{ # copies < 2
|
|
1122 if($ploidy == $parents_ploidy[1]){
|
|
1123 if($ploidy > $parents_ploidy[0]){
|
|
1124 $caveats = "Copy loss is the same as affected mother, but less than unaffected father (". $parents_ploidy[0]. "x)";
|
|
1125 }
|
|
1126 else{
|
|
1127 $caveats = "Copy loss is as severe as in affected mother";
|
|
1128 }
|
|
1129 }
|
|
1130 elsif($ploidy > $parents_ploidy[1]){
|
|
1131 if($ploidy > $parents_ploidy[0]){
|
|
1132 if($parents_ploidy[1] == 0 and $parents_ploidy[0] == 0){
|
|
1133 $caveats = "Poor mapping, or Mendelian inheritence violation is severe: no copies of region in either parent, but present in offspring";
|
|
1134 }
|
|
1135 elsif($ploidy == 2){
|
|
1136 next; # child got best of both parents, ignore from CNV standpoint (may still have SNPs of course, or translocation, etc.)
|
|
1137 }
|
|
1138 else{
|
|
1139 $caveats = "Copy loss is less severe than in unaffected father (".$parents_ploidy[0]."x), or affected mother (".$parents_ploidy[1]."x)";
|
|
1140 }
|
|
1141 }
|
|
1142 # else: child has less copies than unaffected Dad, but more than affected Mom
|
|
1143 else{
|
|
1144 if($parents_ploidy[0] > 2){
|
|
1145 $caveats = "Copy loss was more severe in affected mother (".$parents_ploidy[1]."x), but unaffected father had polyploidy (".$parents_ploidy[0]."x)";
|
|
1146 }
|
|
1147 elsif($parents_ploidy[0] == 2){
|
|
1148 $caveats = "Copy loss was more severe in affected mother (".$parents_ploidy[1]."x), but unaffected father was diploid";
|
|
1149 }
|
|
1150 else{ # unaffected has loss
|
|
1151 $caveats = "Copy loss is more severe than unaffect father (".$parents_ploidy[0]."x), but less severe than affected mother (".$parents_ploidy[1]."x)";
|
|
1152 }
|
|
1153 }
|
|
1154 }
|
|
1155 # past here, ploidy is less than affected mother
|
|
1156 elsif($parents_ploidy[0] > 2){
|
|
1157 $caveats = "Copy loss is more severe than affected mother (".$parents_ploidy[1]."x), and unaffected father had polyploidy (".$parents_ploidy[0]."x)";
|
|
1158 }
|
|
1159 elsif($parents_ploidy[0] == 2){
|
|
1160 $caveats = "Copy loss is more severe than in affected mother (".$parents_ploidy[1]."x)";
|
|
1161 }
|
|
1162 else{
|
|
1163 $caveats = "Copy loss is more severe than in both unaffect father (".$parents_ploidy[0]."x), and affected mother (".$parents_ploidy[1]."x)";
|
|
1164 }
|
|
1165 }
|
|
1166 }
|
|
1167
|
|
1168 }
|
|
1169 if($F[3] and $F[3] ne "-"){ # prexisting caveat from CNV caller
|
|
1170 if(defined $caveats){
|
|
1171 $caveats .= "; $F[3]" unless $caveats =~ /\b$F[3]\b/;
|
|
1172 }
|
|
1173 else{
|
|
1174 $caveats = $F[3];
|
|
1175 }
|
|
1176 }
|
|
1177
|
|
1178 # Sort by start for consistency
|
|
1179 my @target_parents = sort {$feature_range{$cnv_chr}->{$a}->[0]->[0] <=> $feature_range{$cnv_chr}->{$b}->[0]->[0]} @$target_parents;
|
|
1180
|
|
1181 for my $target_parent (@target_parents){
|
|
1182 my $target_caveats = $caveats;
|
|
1183 my $strand = $feature_strand{$target_parent};
|
|
1184 # report the gain/loss of each gene separately, for simplicity in downstream analysis
|
|
1185 my $cnv_exon_start = 10000000000; # genomic coords
|
|
1186 my $cnv_exon_end = 0;
|
|
1187 my $cnv_cdna_start = 0; # cDNA coords
|
|
1188 my $cnv_cdna_end = 0;
|
|
1189 my $off5 = 0; # border outside the exon?
|
|
1190 my $off3 = 0;
|
|
1191 my @feature_ranges = @{$feature_range{$cnv_chr}->{$target_parent}};
|
|
1192 # find the first and last exons in the gene that are inside the CNV
|
|
1193 for my $subregion (@feature_ranges){
|
|
1194 # exon overlaps CNV?
|
|
1195 if($subregion->[0] <= $cnv_end and $subregion->[1] >= $cnv_start){
|
|
1196 if($cnv_exon_start > $subregion->[0]){
|
|
1197 if($cnv_start < $subregion->[0]){
|
|
1198 $cnv_exon_start = $subregion->[0]; $off5 = 1;
|
|
1199 $cnv_cdna_start = $subregion->[2];
|
|
1200 }
|
|
1201 else{
|
|
1202 $cnv_exon_start = $cnv_start; $off5 = 0;
|
|
1203 $cnv_cdna_start = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$cnv_start: $cnv_start-$subregion->[0]);
|
|
1204 }
|
|
1205 }
|
|
1206 if($cnv_exon_end < $subregion->[1]){
|
|
1207 if($cnv_end > $subregion->[1]){
|
|
1208 $cnv_exon_end = $subregion->[1]; $off3 = 1;
|
|
1209 $cnv_cdna_end = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$subregion->[1] : $subregion->[1]-$subregion->[0]);
|
|
1210 }
|
|
1211 else{
|
|
1212 $cnv_exon_end = $cnv_end; $off3 = 0;
|
|
1213 $cnv_cdna_end = $subregion->[2]+($strand eq "-" ? $subregion->[0]-$cnv_end : $cnv_end-$subregion->[0]);
|
|
1214 }
|
|
1215 }
|
|
1216 }
|
|
1217 }
|
|
1218
|
|
1219 my $ends_internally = 0;
|
|
1220 if($cnv_exon_end == 0){ # ends inside the exon
|
|
1221 $cnv_exon_end = $cnv_end;
|
|
1222 $ends_internally = 1;
|
|
1223 }
|
|
1224 # See if it's in the structural variant database
|
|
1225 my @gain_coverage; $#gain_coverage = $cnv_exon_end-$cnv_exon_start; # preallocate blanks
|
|
1226 my @loss_coverage; $#loss_coverage = $cnv_exon_end-$cnv_exon_start; # preallocate blanks
|
|
1227 my $dgv_loss_id; # report the DGV entry that covers most of the observed structural variant
|
|
1228 my $dgv_loss_length = 0; # report the DGV entry that covers most of the observed structural variant
|
|
1229 my $dgv_gain_id; # report the DGV entry that covers most of the observed structural variant
|
|
1230 my $dgv_gain_length = 0; # report the DGV entry that covers most of the observed structural variant
|
|
1231 my $gains;
|
|
1232 my $losses;
|
|
1233 my $dgv_chr = $cnv_chr;
|
|
1234 $dgv_chr =~ s/^chr//; # no prefix in DGV
|
|
1235 #open(DGV, "tabix $dgv_file $dgv_chr:$cnv_exon_start-$cnv_exon_end |") # check out CNV in this gene model region
|
|
1236 # or die "Cannot run tabix: $!\n";
|
|
1237 open(DGV, "/dev/null");
|
|
1238 while(<DGV>){
|
|
1239 my @C = split /\t/, $_;
|
|
1240 next if $C[4] ne "CNV"; # todo: handle indels?
|
|
1241 my $dgv_start = $C[2];
|
|
1242 my $dgv_end = $C[3];
|
|
1243 my $dgv_direction = $C[5];
|
|
1244 my $gain_cov_count = 0;
|
|
1245 my $loss_cov_count = 0;
|
|
1246 if($dgv_direction eq "Gain"){
|
|
1247 for(my $i = ($dgv_start < $cnv_exon_start ? $cnv_exon_start : $dgv_start); $i <= $dgv_end and $i <= $cnv_exon_end; $i++){
|
|
1248 $gain_coverage[$i-$cnv_exon_start] = 1 unless defined $gain_coverage[$i-$cnv_exon_start];
|
|
1249 $gain_cov_count++;
|
|
1250 }
|
|
1251 }
|
|
1252 elsif($dgv_direction eq "Loss"){
|
|
1253 for(my $i = ($dgv_start < $cnv_exon_start ? $cnv_exon_start : $dgv_start); $i <= $dgv_end and $i <= $cnv_exon_end; $i++){
|
|
1254 $loss_coverage[$i-$cnv_exon_start] = 1 unless defined $loss_coverage[$i-$cnv_exon_start];
|
|
1255 $loss_cov_count++;
|
|
1256 }
|
|
1257 }
|
|
1258 if($dgv_direction eq "Gain" and $gain_cov_count > $dgv_gain_length){
|
|
1259 $dgv_gain_id = $C[0];
|
|
1260 $dgv_gain_length = $gain_cov_count;
|
|
1261 }
|
|
1262 if($dgv_direction eq "Loss" and $loss_cov_count > $dgv_loss_length){
|
|
1263 $dgv_loss_id = $C[0];
|
|
1264 $dgv_loss_length = $loss_cov_count;
|
|
1265 }
|
|
1266 }
|
|
1267 close(DGV);
|
|
1268
|
|
1269 my $gain_coverage = 0;
|
|
1270 for my $count (@gain_coverage){
|
|
1271 $gain_coverage++ if defined $count;
|
|
1272 }
|
|
1273 $gain_coverage = sprintf "%.3f", $gain_coverage/($cnv_exon_end-$cnv_exon_start+1); # make it a proportion
|
|
1274 my $loss_coverage = 0;
|
|
1275 for my $count (@loss_coverage){
|
|
1276 $loss_coverage++ if defined $count;
|
|
1277 }
|
|
1278 $loss_coverage = sprintf "%.3f", $loss_coverage/($cnv_exon_end-$cnv_exon_start+1); # make it a proportion
|
|
1279
|
|
1280 my $src = "DGV";
|
|
1281 my $dgv_id = "NA";
|
|
1282 my $dgv_caveat;
|
|
1283 my $dgv_coverage;
|
|
1284 if($ploidy > 2){
|
|
1285 if(not defined $dgv_gain_id){
|
|
1286 if(defined $dgv_loss_id){
|
|
1287 $dgv_id = sprintf "%s/%.3f", $dgv_loss_id, $dgv_loss_length/($cnv_exon_end-$cnv_exon_start+1);
|
|
1288 $dgv_caveat = "; No gains are known in healthy controls, the DGV2 ID reported is for a loss in the same area";
|
|
1289 $dgv_coverage = $loss_coverage;
|
|
1290 }
|
|
1291 else{
|
|
1292 $dgv_id = "novel";
|
|
1293 $dgv_coverage = "NA";
|
|
1294 $src = "NA";
|
|
1295 }
|
|
1296 }
|
|
1297 else{
|
|
1298 $dgv_id = sprintf "%s/%.3f", $dgv_gain_id, $dgv_gain_length/($cnv_exon_end-$cnv_exon_start+1);
|
|
1299 $dgv_coverage = $gain_coverage;
|
|
1300 }
|
|
1301 }
|
|
1302 elsif($ploidy < 2){
|
|
1303 if(not defined $dgv_loss_id){
|
|
1304 if(defined $dgv_gain_id){
|
|
1305 $dgv_id = sprintf "%s/%.3f", $dgv_gain_id, $dgv_gain_length/($cnv_exon_end-$cnv_exon_start+1);
|
|
1306 $dgv_caveat = "; No losses are known in healthy controls, the DGV2 ID reported is for a gain in the same area";
|
|
1307 $dgv_coverage = $gain_coverage;
|
|
1308 }
|
|
1309 else{
|
|
1310 $dgv_id = "novel";
|
|
1311 $dgv_coverage = "NA";
|
|
1312 $src = "NA";
|
|
1313 }
|
|
1314 }
|
|
1315 else{
|
|
1316 $dgv_id = sprintf "%s/%.3f", $dgv_loss_id, $dgv_loss_length/($cnv_exon_end-$cnv_exon_start+1);
|
|
1317 $dgv_coverage = $loss_coverage;
|
|
1318 }
|
|
1319 }
|
|
1320
|
|
1321 my $non_coding = 0;
|
|
1322 if(not exists $feature_cds_max{$target_parent} or not defined $feature_cds_max{$target_parent} or $feature_cds_max{$target_parent} eq ""){
|
|
1323 $non_coding = 1;
|
|
1324 }
|
|
1325 $target_caveats .= $dgv_caveat if defined $dgv_caveat and $dgv_id ne "novel" and $target_caveats !~ /\Q$dgv_caveat\E/;
|
|
1326 #print "Recorded $cnv_chr:$cnv_start caveat $caveats\n";
|
|
1327 # if it doesn't overlap an exon, we need to find out which two exons it's between
|
|
1328 if($ends_internally){
|
|
1329 my $intron_found = 0;
|
|
1330 for(my $i = 0; $i < $#feature_ranges; $i++){
|
|
1331 if($feature_ranges[$i]->[1] < $cnv_start and $feature_ranges[$i+1]->[0] > $cnv_end){
|
|
1332 if($ploidy > 2){ # gain
|
|
1333 if($strand eq "-"){
|
|
1334 record_snv("$target_parent\t",
|
|
1335 ($non_coding ? "g.$cnv_start\_$cnv_end" :
|
|
1336 "c.".($feature_ranges[$i+1]->[2])."+".($feature_ranges[$i+1]->[0]-$cnv_end)."_".($feature_ranges[$i+1]->[2]+1)."-".($cnv_start-$feature_ranges[$i]->[1])),
|
|
1337 # pos Zygosity P-value Variant Reads Total Reads Ref Bases Var Bases Population Frequency Source Pop. freq. or DGV2 gain/loss coverage dbSNP or DGV2 ID
|
|
1338 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\tNA\t$p_value\tNA\tNA\t",
|
|
1339 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n");
|
|
1340 }
|
|
1341 else{
|
|
1342 record_snv("$target_parent\t",
|
|
1343 ($non_coding ? "g.$cnv_start\_$cnv_end" :
|
|
1344 "c.".($feature_ranges[$i+1]->[2]-1)."+".($cnv_start-$feature_ranges[$i]->[1])."_".$feature_ranges[$i+1]->[2]."-".($feature_ranges[$i+1]->[0]-$cnv_end)),
|
|
1345 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\tNA\t$p_value\tNA\tNA\t",
|
|
1346 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n");
|
|
1347 }
|
|
1348 }
|
|
1349 else{ # loss
|
|
1350 if($strand eq "-"){
|
|
1351 record_snv("$target_parent\t",
|
|
1352 ($non_coding ? "g.$cnv_start\_$cnv_end" :
|
|
1353 "c.".($feature_ranges[$i+1]->[2])."+".($feature_ranges[$i+1]->[0]-$cnv_end)."_".($feature_ranges[$i+1]->[2]+1)."-".($cnv_start-$feature_ranges[$i]->[1])),
|
|
1354 "del\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t",
|
|
1355 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n");
|
|
1356 }
|
|
1357 else{
|
|
1358 record_snv("$target_parent\t",
|
|
1359 ($non_coding ? "g.$cnv_start\_$cnv_end" :
|
|
1360 "c.".($feature_ranges[$i+1]->[2]-1)."+".($cnv_start-$feature_ranges[$i]->[1])."_".$feature_ranges[$i+1]->[2]."-".($feature_ranges[$i+1]->[0]-$cnv_end)),
|
|
1361 "del\t$strand\t$cnv_chr\t$cnv_start\t$cnv_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t",
|
|
1362 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t\n");
|
|
1363 }
|
|
1364 }
|
|
1365 $intron_found = 1; last;
|
|
1366 }
|
|
1367 }
|
|
1368 warn "Logic error: CNV overlaps a gene ($target_parent), but is neither intronic nor exonic. Offending CNV was $_\n" unless $intron_found;
|
|
1369 next;
|
|
1370 }
|
|
1371 if($strand eq "-"){
|
|
1372 my $tmp = $cnv_cdna_start;
|
|
1373 $cnv_cdna_start = $cnv_cdna_end;
|
|
1374 $cnv_cdna_end = $tmp;
|
|
1375 }
|
|
1376 # Make the location label pretty descriptive
|
|
1377 my $cnv_phase = "";
|
|
1378 if($cnv_exon_start > $cnv_start or $cnv_exon_end < $cnv_end){
|
|
1379 $cnv_phase = "CNV-$cnv_chr:$cnv_start-$cnv_end"; # Use phase to note that it's part of a bigger CNV than just the range of this feature
|
|
1380 }
|
|
1381 # if we get here, we're in a gained/deleted exon category
|
|
1382 # CNVs are fuzzy-edged (as opposed to large indels), so produce HGVS syntax that reflect this
|
|
1383 if($ploidy > 2){ # gain
|
|
1384 # find the exons encompassed by the CNV. NOTE that we assume that polyploidies are proximal
|
|
1385 record_snv("$target_parent\t",
|
|
1386 ($non_coding ? "g.".($cnv_exon_start > $cnv_start ? "$cnv_exon_start-?" : $cnv_start)."_".($cnv_exon_end < $cnv_end ? "$cnv_exon_end+?" : $cnv_end) :
|
|
1387 "c.$cnv_cdna_start".($off5?"-?":"")."_$cnv_cdna_end".($off3?"+?":"")),
|
|
1388 "[".($ploidy-1)."]\t$strand\t$cnv_chr\t$cnv_exon_start\t$cnv_exon_end\tNA\t$p_value\tNA\tNA\t",
|
|
1389 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t$cnv_phase\n");
|
|
1390 }
|
|
1391 else{ # loss
|
|
1392 #translate genome coordinates into cDNA coordinates
|
|
1393 record_snv("$target_parent\t",
|
|
1394 ($non_coding ? "g.".($cnv_exon_start > $cnv_start ? "$cnv_exon_start-?" : $cnv_start)."_".($cnv_exon_end < $cnv_end ? "$cnv_exon_end+?" : $cnv_end) :
|
|
1395 "c.$cnv_cdna_start".($off5?"-?":"")."_$cnv_cdna_end".($off3?"+?":"")),
|
|
1396 "del\t$strand\t$cnv_chr\t$cnv_exon_start\t$cnv_exon_end\t", ($ploidy == 1 ? "heterozygote" : "homozygote"), "\t$p_value\tNA\tNA\t",
|
|
1397 "NA\tNA\t$src\t$dgv_coverage\t$dgv_id\tNA\tNA\t".range2genes($cnv_chr,$cnv_start,$cnv_end)."\t$target_caveats\t$cnv_phase\n");
|
|
1398 }
|
|
1399 }
|
|
1400 }
|
|
1401 close(CNV);
|
|
1402
|
|
1403 }
|
|
1404
|
|
1405
|
|
1406 #sort genes by start, then longest if tied
|
|
1407 my %rc = qw(A T T A G C C G N N S W W S K M M K Y R R Y X X);
|
|
1408 print STDERR "Processing variant calls..." unless $quiet;
|
|
1409 %chr_read = ();
|
|
1410 open(VCFIN, $input_file)
|
|
1411 or die "Cannot open $input_file for reading: $!\n";
|
|
1412 while(<VCFIN>){
|
|
1413 if(/^\s*(?:#|$)/){ # blank or hash comment lines
|
|
1414 next;
|
|
1415 }
|
|
1416 chomp;
|
|
1417 my @fields = split /\t/, $_;
|
|
1418
|
|
1419 next unless exists $feature_range{$fields[0]};
|
|
1420 if(not $quiet and not exists $chr_read{$fields[0]}){
|
|
1421 print STDERR " $fields[0]";
|
|
1422 $chr_read{$fields[0]} = 1;
|
|
1423 #print STDERR "(not in reference file!)" unless exists $feature_range{$fields[0]};
|
|
1424 }
|
|
1425
|
|
1426 next if $fields[4] eq "<NON_REF>"; # GVCF background stuff
|
|
1427 next if $fields[9] eq "./." or $fields[9] eq "."; # no call
|
|
1428 my $chr = $fields[0];
|
|
1429 next if defined $which_chr and $chr ne $which_chr and $chr ne "chr$which_chr" and "chr$chr" ne $which_chr;
|
|
1430 print STDERR "passes chr and field # test" if grep /dataset_7684.dat/, @ARGV;
|
|
1431 $chr = "chr$chr" if $chr !~ /^chr/;
|
|
1432 $fields[8] =~ s/\s+$//;
|
|
1433 my @values = split /:/, $fields[9];
|
|
1434 #print STDERR join(" / ", @values), "\n" if $. == 84;
|
|
1435 my @keys = split /:/, $fields[8];
|
|
1436 my $zygosity = "n/a";
|
|
1437 my $quality = "n/a";
|
|
1438 my $read_depth = "n/a";
|
|
1439 my $variant_depths = "n/a";
|
|
1440 for(my $i = 0; $i <= $#keys and $i <= $#values; $i++){ # values max index check because some genotypers are nasty and don't provide as many fields as they say they will
|
|
1441 if($keys[$i] eq "GT"){
|
|
1442 if($values[$i] =~ /\./ or $values[$i] =~ /0\/0/){ # one genotype not described
|
|
1443 $zygosity = "none";
|
|
1444 last;
|
|
1445 }
|
|
1446 else{ # genotypes described
|
|
1447 $zygosity = $values[$i] =~ /[02]/ ? "heterozygote" : "homozygote";
|
|
1448 }
|
|
1449 }
|
|
1450 elsif($keys[$i] eq "DNM_CONFIG" and $zygosity eq "n/a"){ # hack
|
|
1451 $zygosity = $values[$i] =~ /^(.)\1/ ? "homozygote" : "heterozygote";
|
|
1452 }
|
|
1453 elsif($keys[$i] eq "GQ" and $values[$i] ne "."){
|
|
1454 #print "Checking GQ (index $i) $values[$i] gq2p\n" if $. == 84;
|
|
1455 $quality = gq2p($values[$i]);
|
|
1456 }
|
|
1457 elsif($keys[$i] eq "RD"){ # from some tools like denovo variant finders
|
|
1458 $read_depth = $values[$i];
|
|
1459 }
|
|
1460 elsif($keys[$i] eq "DP"){
|
|
1461 $read_depth = $values[$i];
|
|
1462 }
|
|
1463 # the frequency of the variant can go by many names, here we have freebayes (A* are new and old versions) and atlas2_indel
|
|
1464 elsif($keys[$i] eq "AA" or $keys[$i] eq "VR" or $keys[$i] eq "AO"){
|
|
1465 $variant_depths = $values[$i];
|
|
1466 }
|
|
1467 # here we have GATK variant freq of form ref#,var#
|
|
1468 elsif($keys[$i] eq "AD"){
|
|
1469 $variant_depths = $values[$i];
|
|
1470 $variant_depths =~ s/^\d+,//;
|
|
1471 }
|
|
1472 else{
|
|
1473 #print STDERR "Ignoring field $keys[$i]\n";
|
|
1474 }
|
|
1475 }
|
|
1476 next if $zygosity eq "none"; # GVCF non-ref for example or when multiple samples are reported simultaneously
|
|
1477 $quality = z2p($1) if $fields[7] =~ /Z=(\d+\.\d+)/;
|
|
1478 if($quality eq "n/a" and $fields[5] ne "."){
|
|
1479 $quality = gq2p($fields[5]);
|
|
1480 }
|
|
1481 if($fields[5] eq "0" and $fields[6] eq "PASS"){ # not qual and a PASS in the filter column
|
|
1482 $quality = 1;
|
|
1483 }
|
|
1484 elsif($quality ne "n/a" and $quality > $min_pvalue){ # p-value cutoff
|
|
1485 #print "Checking call quality $fields[5] gq2p\n" if $. == 84;
|
|
1486 next unless gq2p($fields[5]) <= $min_pvalue; # in some cases, programs like FreeBayes give low genotype quality such as when a call is borderline homo/het
|
|
1487 # in these cases it would be silly to reject the call if their are many supporting reads.
|
|
1488 }
|
|
1489
|
|
1490 # Some tools like GATK don't report number of variant reads...infer from other data if possible
|
|
1491 if($variant_depths eq "n/a"){
|
|
1492 my @key_value_pairs = split /;/, $fields[7];
|
|
1493 for my $key_value_pair (@key_value_pairs){
|
|
1494 if($key_value_pair !~ /^(.*?)=(.*)$/){
|
|
1495 next;
|
|
1496 #next if $key_value_pair eq "INDEL"; # samtools peculiarity
|
|
1497 #die "Key-value pair field (column #8) does not have the format key=value for entry $key_value_pair (line #$. of ), please fix the VCF file\n";
|
|
1498 }
|
|
1499 if($1 eq "AB"){ # GATK: for het calls, AB is ref/(ref+var), only one variant reported per line
|
|
1500 $variant_depths = "";
|
|
1501 for my $ab (split /,/, $2){
|
|
1502 $variant_depths .= int((1-$ab)*$read_depth).",";
|
|
1503 }
|
|
1504 chop $variant_depths;
|
|
1505 }
|
|
1506 elsif($1 eq "MLEAC"){
|
|
1507 }
|
|
1508 elsif($1 eq "DP4"){ # samtools: high-quality ref-forward bases, ref-reverse, alt-forward and alt-reverse bases
|
|
1509 my @rds = split /,/, $2;
|
|
1510 $variant_depths = $rds[2]+$rds[3];
|
|
1511 $read_depth = $rds[0]+$rds[1]+$variant_depths;
|
|
1512 if($fields[4] =~ /,/){ # samtools doesn't break down compound het calls into individual frequencies
|
|
1513 my $num_alt_genotypes = $fields[4] =~ tr/,/,/;
|
|
1514 $num_alt_genotypes++;
|
|
1515 my $even_prop = sprintf "%.2f", $variant_depths/$read_depth/$num_alt_genotypes;
|
|
1516 $variant_depths = join(",", ($even_prop) x $num_alt_genotypes);
|
|
1517 if(not exists $chr2caveats{"$chr:$fields[1]"}){
|
|
1518 $chr2caveats{"$chr:$fields[1]"} = "compound het var freq n/a in orig VCF file, auto set to $even_prop";
|
|
1519 }
|
|
1520 else{
|
|
1521 $chr2caveats{"$chr:$fields[1]"} .= "; compound het var freq n/a in orig VCF file, auto set to $even_prop";
|
|
1522 }
|
|
1523 }
|
|
1524 }
|
|
1525 }
|
|
1526 }
|
|
1527 if($variant_depths eq "n/a"){ # usually homo var calls, can only assume all reads are variant
|
|
1528 if($zygosity eq "homozygote"){
|
|
1529 $variant_depths = $read_depth;
|
|
1530 if($read_depth ne "n/a"){
|
|
1531 if(not exists $chr2caveats{"$chr:$fields[1]"}){
|
|
1532 $chr2caveats{"$chr:$fields[1]"} = "homo var freq n/a in orig VCF file, auto set to 1.0";
|
|
1533 }
|
|
1534 else{
|
|
1535 $chr2caveats{"$chr:$fields[1]"} = "; homo var freq n/a in orig VCF file, auto set to 1.0";
|
|
1536 }
|
|
1537 }
|
|
1538 }
|
|
1539 else{
|
|
1540 if($read_depth ne "n/a"){
|
|
1541 $variant_depths = int($read_depth/2);
|
|
1542 if(not exists $chr2caveats{"$chr:$fields[1]"}){
|
|
1543 $chr2caveats{"$chr:$fields[1]"} = "het var freq n/a in orig VCF file, auto set to 0.5";
|
|
1544 }
|
|
1545 else{
|
|
1546 $chr2caveats{"$chr:$fields[1]"} = "; het var freq n/a in orig VCF file, auto set to 0.5";
|
|
1547 }
|
|
1548 }
|
|
1549 else{
|
|
1550 $variant_depths = $read_depth;
|
|
1551 }
|
|
1552 }
|
|
1553 }
|
|
1554
|
|
1555 my $target_parents = $feature_intervaltree{$chr}->fetch($fields[1]-$flanking_bases, $fields[1]+length($fields[3])+$flanking_bases);
|
|
1556 # Last ditch, if not in a gene model, is it at least in an enrichment region?
|
|
1557 if(not @$target_parents){
|
|
1558 next if not exists $enrichment_regions{$chr};
|
|
1559 my $regions_ref = $enrichment_regions{$chr};
|
|
1560 my $location = $fields[1];
|
|
1561 my $strand = "+"; # for lack of a better choice
|
|
1562 for(my $i = find_earliest_index($location-$flanking_bases, $regions_ref);
|
|
1563 $i < $#$regions_ref and $location <= $regions_ref->[$i]->[1]+$flanking_bases;
|
|
1564 $i++){
|
|
1565 next unless $regions_ref->[$i]->[0]-$flanking_bases <= $location and $regions_ref->[$i]->[1]+$flanking_bases >= $location;
|
|
1566
|
|
1567 my $feature_name = "enrichment_target_$chr:".$regions_ref->[$i]->[0]."-".$regions_ref->[$i]->[1];
|
|
1568 $feature_type{$feature_name} = "misc_enrichment_kit_target";
|
|
1569 $feature_length{$feature_name} = $regions_ref->[$i]->[1]-$regions_ref->[$i]->[0]+1;
|
|
1570 my @variants = split /,/, $fields[4];
|
|
1571 my @variant_depths = split /,/, $variant_depths;
|
|
1572 my $ref = uc($fields[3]);
|
|
1573 for(my $j = 0; $j <= $#variants; $j++){
|
|
1574 my $variant = $variants[$j];
|
|
1575 next if $variant eq "<NON_REF>" or $variant_depths[$j] eq "0"; # GVCF stuff
|
|
1576 my $variant_depth = $variant_depths[$j];
|
|
1577 if($min_prop){
|
|
1578 next unless $variant_depth >= $min_depth and $read_depth ne "n/a" and $variant_depth/$read_depth >= $min_prop;
|
|
1579 }
|
|
1580 if(length($ref) == 1 and length($variant) == 1){ # SNP
|
|
1581 record_snv("$feature_name\tg.$location",
|
|
1582 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1583 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1584 }
|
|
1585 elsif(length($ref) == 1 and length($variant) > 1){ # insertion
|
|
1586 record_snv("$feature_name\tg.$location\_",($location+1),
|
|
1587 "ins",substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1588 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1589 }
|
|
1590 elsif(length($variant) == 1 and length($ref) > 1){ # deletion
|
|
1591 record_snv("$feature_name\tg.$location\_",($location+length($ref)-1),
|
|
1592 "del",substr($ref, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1593 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1594 }
|
|
1595 else{ # indel
|
|
1596 record_snv("$feature_name\tg.$location\_",($location+length($ref)-1),
|
|
1597 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1598 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1599 }
|
|
1600 } # end for variants
|
|
1601 next; # process next record, we've done all we can with a non-coding-gene SNP
|
|
1602 }
|
|
1603 }
|
|
1604
|
|
1605 for my $target_parent (@$target_parents){
|
|
1606
|
|
1607 print STDERR "Checking parent $target_parent for on $chr:$fields[1] $fields[3] -> $fields[4]\n" if grep /dataset_7684.dat/, @ARGV;
|
|
1608 my @feature_ranges = @{$feature_range{$chr}->{$target_parent}};
|
|
1609 # Calculate the position of the change within the feature range position
|
|
1610 my $strand = $feature_strand{$target_parent};
|
|
1611 my $trans_table = exists $feature_transl_table{$target_parent} ? $feature_transl_table{$target_parent} : $default_transl_table;
|
|
1612 $fields[4]=~tr/"//d; # sometime strangely surroundsed by quotes
|
|
1613 my @variants = split /,/, $fields[4];
|
|
1614 my @variant_depths = split /,/, $variant_depths;
|
|
1615 my @refs = (uc($fields[3])) x scalar(@variants);
|
|
1616 my @locations = ($fields[1]) x scalar(@variants);
|
|
1617
|
|
1618 for(my $j = 0; $j <= $#variants; $j++){
|
|
1619 my $ref = $refs[$j];
|
|
1620 my $location = $locations[$j];
|
|
1621 my $feature_offset = 0;
|
|
1622 my $feature_num = 0;
|
|
1623 my $variant = uc($variants[$j]);
|
|
1624 next if $variant eq "<NON_REF>" or $variant_depths[$j] eq "0"; # GVCF stuff
|
|
1625 my $variant_depth = $variant_depths[$j] || "n/a";
|
|
1626 #print STDERR "Evaluating target parent $target_parent for $chr:$fields[1]-".($fields[1]+length($fields[3]))." -> ",join("/", @$target_parents) , "\n" if $fields[1] == 982994;
|
|
1627
|
|
1628 # Break down MNPs into individual SNPs that are phased (TODO: skip if it's an inversion? would require amalgamating SNPs for tools that call them individually, phased :-P)
|
|
1629 if(length($variant) > 1 and length($variant) == length($ref)){
|
|
1630 my @subvariants;
|
|
1631 my @subrefs;
|
|
1632 my @sublocations;
|
|
1633 my $phase_range = $location."-".($location+length($ref)-1);
|
|
1634 for(my $k = 0; $k < length($variant); $k++){
|
|
1635 my $r = substr($ref, $k, 1);
|
|
1636 my $v = substr($variant, $k, 1);
|
|
1637 if($r ne $v){
|
|
1638 push @subvariants, $v;
|
|
1639 push @subrefs, $r;
|
|
1640 push @sublocations, $location+$k;
|
|
1641 }
|
|
1642 elsif(@variants == 1){
|
|
1643 next; # homo ref call
|
|
1644 }
|
|
1645 if($zygosity eq "heterozygote"){
|
|
1646 # need to ignore case where a homozygous call (variant or ref) is included in a double non-ref het MNP
|
|
1647 if(@variants > 1){
|
|
1648 my $homo = 1;
|
|
1649 for(my $l = 0; $l <= $#variants; $l++){ # using loop in case we handle oligoploid genomes in the future
|
|
1650 if(length($variants[$l]) <= $k or substr($variants[$l], $k, 1) ne $v){
|
|
1651 $homo = 0;
|
|
1652 last;
|
|
1653 }
|
|
1654 }
|
|
1655 next if $homo;
|
|
1656 }
|
|
1657 my $phase_key = "$chr:".($location+$k).":$v";
|
|
1658 my $phase_label = "M$j-$chr:$phase_range";
|
|
1659 if(exists $chr2phase{$phase_key}){
|
|
1660 if($chr2phase{$phase_key} !~ /$phase_label/){
|
|
1661 $chr2phase{$phase_key} .= ",$phase_label";
|
|
1662 }
|
|
1663 }
|
|
1664 else{
|
|
1665 $chr2phase{$phase_key} = $phase_label;
|
|
1666 }
|
|
1667 }
|
|
1668 }
|
|
1669 # recycle this MNP variant loop to start processing the individual SNPs
|
|
1670 splice(@refs, $j, 1, @subrefs);
|
|
1671 splice(@variants, $j, 1, @subvariants);
|
|
1672 splice(@locations, $j, 1, @sublocations);
|
|
1673 splice(@variant_depths, $j, 1, ($variant_depth) x scalar(@subvariants));
|
|
1674 $j--;
|
|
1675 next;
|
|
1676 }
|
|
1677
|
|
1678 if($min_prop != 0 and $variant_depth eq "n/a" or $variant_depth eq "."){
|
|
1679 print STDERR "Could not parse variant depth from $_\n" unless $quiet;
|
|
1680 next;
|
|
1681 }
|
|
1682 next unless $min_prop == 0 or $min_prop and $variant_depth >= $min_depth and $read_depth ne "n/a" and $variant_depth/$read_depth >= $min_prop;
|
|
1683 if($zygosity eq "NA"){
|
|
1684 # make the call ourselves
|
|
1685 $zygosity = $variant_depths/$read_depth > 1-$min_prop ? "homozygote" : "heterozygote";
|
|
1686 }
|
|
1687 # e.g. chr22 47857671 . CAAAG AAGAT,AAAAG 29.04 .
|
|
1688 if(length($variant) > 1 and length($variant) == length($ref)){
|
|
1689 for(my $k = 0; $k < length($variant); $k++){
|
|
1690 my $fixed_variant = $variant;
|
|
1691 substr($fixed_variant, $k, 1) = substr($ref, $k, 1);
|
|
1692 if($fixed_variant eq $ref){ # single base difference at base k between the two
|
|
1693 $ref = substr($ref, $k, 1);
|
|
1694 $variant = substr($variant, $k, 1);
|
|
1695 $location += $k;
|
|
1696 last;
|
|
1697 }
|
|
1698 }
|
|
1699 }
|
|
1700
|
|
1701 # samtools reports indels with long common tails, causing non-canonical HGVS reporting and a problem when looking up the variant in dbSNP etc.
|
|
1702 # remove common tails to variant calls in order to try to rectify this
|
|
1703 else{
|
|
1704 while(length($ref) > 1 and length($variant) > 1 and substr($ref, length($ref)-1) eq substr($variant, length($variant)-1)){
|
|
1705 chop $ref; chop $variant;
|
|
1706 }
|
|
1707 }
|
|
1708
|
|
1709 # See if a caveat should be added because the indel was in a polyhomomer region
|
|
1710 if(length($ref) > length($variant) and index($ref, $variant) == 0 and $fasta_index->fetch("$chr:".($location+1)."-".($location+length($ref)+1)) =~ /^([ACGT])\1+$/i){
|
|
1711 if(not exists $chr2caveats{"$chr:$location"}){
|
|
1712 $chr2caveats{"$chr:$location"} = "poly".uc($1)." region deletion";
|
|
1713 }
|
|
1714 elsif($chr2caveats{"$chr:$location"} !~ /poly/){
|
|
1715 $chr2caveats{"$chr:$location"} .= "; poly".uc($1)." region deletion";
|
|
1716 }
|
|
1717 }
|
|
1718 elsif(length($ref) < length($variant) and index($variant, $ref) == 0 and substr($variant, 1) =~ /^([ACGT])\1+$/i){
|
|
1719 if(not exists $chr2caveats{"$chr:$location"}){
|
|
1720 $chr2caveats{"$chr:$location"} .= "poly".uc($1)." region insertion";
|
|
1721 }
|
|
1722 elsif($chr2caveats{"$chr:$location"} !~ /poly/){
|
|
1723 $chr2caveats{"$chr:$location"} .= "; poly".uc($1)." region insertion";
|
|
1724 }
|
|
1725 }
|
|
1726
|
|
1727 # Not a protein-coding gene? Report genomic cooordinates for HGVS
|
|
1728 if(not exists $feature_cds_max{$target_parent} or not defined $feature_cds_max{$target_parent} or $feature_cds_max{$target_parent} eq ""){
|
|
1729 if(length($ref) == 1 and length($variant) == 1){ # SNP
|
|
1730 record_snv("$target_parent\tg.$location",
|
|
1731 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1732 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1733 }
|
|
1734 elsif(length($ref) == 1 and length($variant) > 1){ # insertion
|
|
1735 record_snv("$target_parent\tg.$location\_",($location+1),
|
|
1736 "ins",substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1737 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1738 }
|
|
1739 elsif(length($variant) == 1 and length($ref) > 1){ # deletion
|
|
1740 record_snv("$target_parent\tg.$location\_",($location+length($ref)-1),
|
|
1741 "del",substr($ref, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1742 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1743 }
|
|
1744 else{ # indel
|
|
1745 record_snv("$target_parent\tg.$location\_",($location+length($ref)-1),
|
|
1746 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1747 join("\t",prop_info_key($chr,$location,$ref,$variant)),"\tNA\n");
|
|
1748 }
|
|
1749 next; # process next record, we've done all we can with a non-coding-gene SNP
|
|
1750 }
|
|
1751
|
|
1752 if($strand eq "-"){
|
|
1753 # set up utr offset for correct CDS coordinates
|
|
1754 for(my $i = $#feature_ranges; $i >= 0; $i--){
|
|
1755 # exon is completely 5' of the start
|
|
1756 if($feature_ranges[$i]->[0] > $feature_cds_max{$target_parent}){
|
|
1757 #print STDERR "Whole 5' UTR exon $i: ",$feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1,"\n";
|
|
1758 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
1759 }
|
|
1760 # exon with the cds start
|
|
1761 elsif($feature_ranges[$i]->[1] >= $feature_cds_max{$target_parent} and
|
|
1762 $feature_ranges[$i]->[0] <= $feature_cds_max{$target_parent}){
|
|
1763 #print STDERR "Start codon in exon $i: ", $feature_cds_max{$target_parent} - $feature_ranges[$i]->[1],"\n";
|
|
1764 $feature_offset += $feature_cds_max{$target_parent} - $feature_ranges[$i]->[1];
|
|
1765 last;
|
|
1766 }
|
|
1767 else{
|
|
1768 die "The CDS for $target_parent (on negative strand) ends downstream ",
|
|
1769 "($feature_cds_max{$target_parent}) of the an exon",
|
|
1770 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n";
|
|
1771 }
|
|
1772 }
|
|
1773 for(my $i = $#feature_ranges; $i >= 0; $i--){
|
|
1774 my $feature = $feature_ranges[$i];
|
|
1775 # in the 3' UTR region of the gene
|
|
1776 if($location < $feature_cds_min{$target_parent}){
|
|
1777 my $feature_exon = 0;
|
|
1778 $feature = $feature_ranges[$feature_exon];
|
|
1779 while($location > $feature->[1]+$flanking_bases and
|
|
1780 $feature_exon < $#feature_ranges){
|
|
1781 $feature = $feature_ranges[++$feature_exon]; # find the 3' utr exon in which the variant is located
|
|
1782 }
|
|
1783 # utr exons passed entirely
|
|
1784 my $stop_exon = $feature_exon;
|
|
1785 while($feature_ranges[$stop_exon]->[1] < $feature_cds_min{$target_parent}){
|
|
1786 $stop_exon++;
|
|
1787 }
|
|
1788 my $post_offset = $feature_cds_min{$target_parent}-$feature_ranges[$stop_exon]->[0]; # offset from the stop codon in the final coding exon
|
|
1789 while($stop_exon > $feature_exon){
|
|
1790 $post_offset += $feature_ranges[$stop_exon]->[1]-$feature_ranges[$stop_exon]->[0]+1;
|
|
1791 $stop_exon--;
|
|
1792 }
|
|
1793
|
|
1794 my $pos = $feature->[1]-$location+1+$post_offset;
|
|
1795 my $junction_dist;
|
|
1796 if($location < $feature->[0]){ # after a UTR containing exon? set as .*DD+DD
|
|
1797 $junction_dist = ($feature->[0]-$location);
|
|
1798 $pos = ($post_offset+$feature->[1]-$feature->[0]+1)."+".$junction_dist;
|
|
1799 }
|
|
1800 elsif($location > $feature->[1]){ # before a total UTR exon? set as .*DD-DD
|
|
1801 $junction_dist = -($location-$feature->[1]);
|
|
1802 $pos = ($post_offset+1).$junction_dist;
|
|
1803 }
|
|
1804 else{ # in the UTR exon
|
|
1805 if($location - $feature->[0] < $feature->[1] - $location){ # location is closer to exon donor site
|
|
1806 $junction_dist = -($location - $feature->[0]+1); # +1 for HGVS syntax compatibility (there is no position 0, direct skip from -1 to +1)
|
|
1807 }
|
|
1808 else{
|
|
1809 $junction_dist = $feature->[1] - $location +1;
|
|
1810 }
|
|
1811 }
|
|
1812 if(length($ref) == 1 and length($variant) == 1){
|
|
1813 my $rc = join("",map({$rc{$_}} split(//,reverse($variant))));
|
|
1814 # 3' UTR SNP
|
|
1815 record_snv("$target_parent\tc.*$pos",
|
|
1816 "$rc{$ref}>$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1817 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1818 join("\t",prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1819 }
|
|
1820 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
1821 my $rc = join("",map({$rc{$_}} split(//,reverse(substr($variant,1)))));
|
|
1822 # 3' UTR insertion
|
|
1823 record_snv("$target_parent\tc.*",
|
|
1824 hgvs_plus($pos,-1),"_*",$pos,
|
|
1825 "ins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1826 #"ins",substr($variant,1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1827 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1828 }
|
|
1829 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
1830 my $rc = join("",map({$rc{$_}} split(//,reverse($ref))));
|
|
1831 my $delBases = substr($rc,0,length($rc)-1);
|
|
1832 if(length($ref) == 2){
|
|
1833 # 3' UTR single base deletion
|
|
1834 record_snv("$target_parent\tc.*",hgvs_plus($pos,-1),
|
|
1835 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1836 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1837 }
|
|
1838 else{
|
|
1839 # longer 3' UTR deletion
|
|
1840 record_snv("$target_parent\tc.*",
|
|
1841 hgvs_plus($pos,-length($ref)+1),"_*",hgvs_plus($pos, -1),
|
|
1842 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1843 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1844 }
|
|
1845 }
|
|
1846 else{
|
|
1847 my $rc = join("",map({$rc{$_}} split(//,reverse($variant))));
|
|
1848 if($rc eq $ref and length($variant) > 3){
|
|
1849 # 3' UTR inversion
|
|
1850 record_snv("$target_parent\tc.*",
|
|
1851 hgvs_plus($pos,-length($ref)+1),"_*",$pos,
|
|
1852 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1853 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1854 last;
|
|
1855 }
|
|
1856
|
|
1857 # complex substitution in 3' UTR
|
|
1858 # Will break if stop codon is modified
|
|
1859 record_snv("$target_parent\tc.*",
|
|
1860 hgvs_plus($pos,-length($ref)+1),"_*", $pos,
|
|
1861 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1862 join("\t", prop_info_key($chr,$location,$ref,$variant,$junction_dist)),"\tNA\n");
|
|
1863 }
|
|
1864 last;
|
|
1865 }
|
|
1866 # in the feature
|
|
1867 elsif($location >= $feature->[0] and $location <= $feature->[1]){
|
|
1868 my $pos = $feature_offset+$feature->[1]-$location+1;
|
|
1869 if($location > $feature_cds_max{$target_parent}){ #since there is no position 0, the pos is in UTR, subtract one
|
|
1870 $pos = hgvs_plus($pos, -1);
|
|
1871 }
|
|
1872 my $first_exon_base = $feature_offset+1;
|
|
1873 my $exon_edge_dist = $feature->[1]-$location+1; # equiv of HGVS +X or -X intron syntax, but for exons
|
|
1874 $exon_edge_dist = $feature->[0]-$location-1 if abs($feature->[0]-$location-1) < $exon_edge_dist; # pick closer of donor and acceptor sites
|
|
1875 #print STDERR "Got ", $feature->[1]-$location+1, "vs. ", $feature->[0]-$location-1, ": chose $exon_edge_dist\n";
|
|
1876 if(length($ref) == 1 and length($variant) == 1){
|
|
1877 # SNP
|
|
1878 record_snv("$target_parent\tc.",
|
|
1879 $pos,
|
|
1880 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1881 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1882 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1883 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1884 }
|
|
1885 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
1886 my $rc = join("",map({$rc{$_}} split(//,reverse($variant))));
|
|
1887 my $insBases = substr($rc,1);
|
|
1888 # insertion
|
|
1889 record_snv("$target_parent\tc.",
|
|
1890 hgvs_plus_exon($pos, -1, $first_exon_base),"_",$pos,"ins$insBases",
|
|
1891 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1892 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1893 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1894 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1895 }
|
|
1896 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
1897 my $rc = join("",map({$rc{$_}} split(//,reverse($ref))));
|
|
1898 my $delBases = substr($rc,0,length($rc)-1);
|
|
1899 # single nucleotide deletion
|
|
1900 if(length($ref) == 2){
|
|
1901 record_snv("$target_parent\tc.",
|
|
1902 hgvs_plus_exon($pos, -1, $first_exon_base),
|
|
1903 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1904 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1905 ($pos-1 < 1 ? "NA" : $pos-1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1906 #($pos-1 < 1 ? "NA" : $pos-1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1907 }
|
|
1908 # longer deletion
|
|
1909 else{
|
|
1910 $exon_edge_dist = $feature->[1]-$location-length($ref)+1 if abs($feature->[1]-$location-length($ref)+1) < $exon_edge_dist;
|
|
1911 record_snv("$target_parent\tc.",
|
|
1912 hgvs_plus_exon($pos, -length($ref)+1, $first_exon_base),"_",
|
|
1913 hgvs_plus_exon($pos, -1, $first_exon_base),
|
|
1914 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1915 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1916 ($pos-1 < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1917 #($pos-1 < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1918 }
|
|
1919 }
|
|
1920 else{
|
|
1921 # complex substitution
|
|
1922 $exon_edge_dist = $feature->[1]-$location-length($ref)+1 if abs($feature->[1]-$location-length($ref)+1) < $exon_edge_dist;
|
|
1923 my $rc = join("",map({$rc{$_}} split(//,reverse($variant))));
|
|
1924 if($rc eq $variant and length($variant) > 3){
|
|
1925 # inversion
|
|
1926 record_snv("$target_parent\tc.",
|
|
1927 hgvs_plus_exon($pos,-length($ref)+1,$first_exon_base),"_",
|
|
1928 $pos,
|
|
1929 "inv",
|
|
1930 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1931 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1932 ($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1933
|
|
1934 last;
|
|
1935 }
|
|
1936 record_snv("$target_parent\tc.",
|
|
1937 hgvs_plus_exon($pos,-length($ref)+1,$first_exon_base),"_",
|
|
1938 $pos,
|
|
1939 "delins$rc",
|
|
1940 "\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1941 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
1942 ($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1943 #($pos < 1 ? "NA" : $pos-length($ref)+1 < $first_exon_base ? "p.?" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
1944 }
|
|
1945 last;
|
|
1946 }
|
|
1947 # 5' of feature (on negative strand)
|
|
1948 elsif($location > $feature->[1]){
|
|
1949 if(length($ref) == 1 and length($variant) == 1){
|
|
1950 # intronic SNP
|
|
1951 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
1952 # Closer to acceptor site
|
|
1953 record_snv("$target_parent\tc.",$feature_offset+1,
|
|
1954 ($feature->[1]-$location),
|
|
1955 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1956 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1957 join("\t", prop_info_key($chr,$location,$ref,$variant, $feature->[1]-$location)),"\tNA\n");
|
|
1958 }
|
|
1959 else{
|
|
1960 # Closer to donor site
|
|
1961 record_snv("$target_parent\tc.",$feature_offset,"+",
|
|
1962 ($feature_ranges[$i+1]->[0]-$location),
|
|
1963 "$rc{$ref}>$rc{$variant}\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1964 #"$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1965 join("\t", prop_info_key($chr,$location,$ref,$variant, $feature_ranges[$i+1]->[0]-$location)),"\tNA\n");
|
|
1966 }
|
|
1967 }
|
|
1968 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
1969 my $rc = join("",map({$rc{$_}} split(//,reverse(substr($variant,1)))));
|
|
1970 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
1971 # intronic insertion near acceptor
|
|
1972 my $pos = ($feature_offset+1).($feature->[1]-$location);
|
|
1973 record_snv("$target_parent\tc.",
|
|
1974 hgvs_plus($pos,-1),"_",$pos,
|
|
1975 "ins",
|
|
1976 $rc,"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1977 #substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1978 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location-1)),"\tNA\n");
|
|
1979 }
|
|
1980 else{
|
|
1981 # intronic insertion near donor
|
|
1982 my $pos = $feature_offset."+".($feature_ranges[$i+1]->[0]-$location);
|
|
1983 record_snv("$target_parent\tc.",
|
|
1984 hgvs_plus($pos,-1),"_",$pos,
|
|
1985 "ins",
|
|
1986 $rc,"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1987 #substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
1988 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location+1)),"\tNA\n");
|
|
1989 }
|
|
1990 }
|
|
1991 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
1992 # intronic deletion
|
|
1993 # single nucleotide deletion
|
|
1994 my $rc = reverse($ref);
|
|
1995 $rc=~tr/ACGT/TGCA/;
|
|
1996 my $delBases = substr($rc, 0, length($rc)-1);
|
|
1997 if(length($ref) == 2){
|
|
1998 # single intronic deletion near acceptor
|
|
1999 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
2000 my $off = $feature->[1]-$location-1;
|
|
2001 record_snv("$target_parent\tc.",
|
|
2002 ($feature_offset+1),$off,
|
|
2003 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2004 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n");
|
|
2005 }
|
|
2006 # single intronic deletion near donor
|
|
2007 else{
|
|
2008 my $pos = $feature_offset;
|
|
2009 my $off = $feature_ranges[$i+1]->[0]-$location+1;
|
|
2010 record_snv("$target_parent\tc.",
|
|
2011 hgvs_plus_exon($pos, $off, $pos),
|
|
2012 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2013 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n");
|
|
2014 }
|
|
2015 }
|
|
2016 # longer deletion
|
|
2017 else{
|
|
2018 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
2019 # long intronic deletion near acceptor
|
|
2020 my $off = $feature->[1]-$location-1;
|
|
2021 my $pos = ($feature_offset+1).$off;
|
|
2022 record_snv("$target_parent\tc.",
|
|
2023 hgvs_plus($pos,-length($ref)+2),"_",$pos,
|
|
2024 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2025 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n");
|
|
2026 }
|
|
2027 else{
|
|
2028 # long intronic deletion near donor
|
|
2029 my $off = $feature_ranges[$i+1]->[0]-$location+1;
|
|
2030 my $pos = ($feature_offset)."+".$off;
|
|
2031 record_snv("$target_parent\tc.",
|
|
2032 $pos,"_",hgvs_plus($pos,-length($ref)-1),
|
|
2033 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2034 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off-length($ref)+1 <= 2 ? "p.?" : "NA"),"\n");
|
|
2035 }
|
|
2036 last;
|
|
2037 }
|
|
2038 }
|
|
2039 else{
|
|
2040 my $rc = reverse($ref);
|
|
2041 $rc=~tr/ACGT/TGCA/;
|
|
2042 if($rc eq $variant and length($variant) > 3){
|
|
2043 # intronic inversion near acceptor site
|
|
2044 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
2045 my $pos = ($feature_offset+1).($feature->[1]-$location);
|
|
2046 record_snv("$target_parent\tc.",
|
|
2047 hgvs_plus($pos,-length($ref)+1),"_",$pos,
|
|
2048 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2049 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location)),"\tNA\n");
|
|
2050 }
|
|
2051 else{
|
|
2052 my $pos = ($feature_offset)."+".($feature_ranges[$i+1]->[0]-$location);
|
|
2053 record_snv("$target_parent\tc.",
|
|
2054 $pos,"_",hgvs_plus($pos, length($ref)-1),
|
|
2055 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2056 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location)),"\tNA\n");
|
|
2057 }
|
|
2058 last;
|
|
2059 }
|
|
2060 $rc = reverse($variant);
|
|
2061 $rc=~tr/ACGT/TGCA/;
|
|
2062 # Intronic complex substitution
|
|
2063 if($i == $#feature_ranges or $feature->[1]-$location >= -1*$flanking_bases){
|
|
2064 # complex intronic substitution near acceptor site
|
|
2065 my $pos = ($feature_offset+1).($feature->[1]-$location);
|
|
2066 record_snv("$target_parent\tc.",
|
|
2067 hgvs_plus($pos, -length($ref)+1),"_",$pos,
|
|
2068 "delins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2069 #"delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2070 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature->[1]-$location)),"\tNA\n");
|
|
2071 }
|
|
2072 else{
|
|
2073 # complex intronic substitution near donor site
|
|
2074 my $pos = $feature_offset."+".($feature_ranges[$i+1]->[0]-$location);
|
|
2075 record_snv("$target_parent\tc.",
|
|
2076 $pos,"_",hgvs_plus($pos, length($ref)-1),
|
|
2077 "delins$rc\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2078 #"delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2079 join("\t", prop_info_key($chr,$location,$ref,$variant,$feature_ranges[$i+1]->[0]-$location)),"\tNA\n");
|
|
2080 }
|
|
2081 }
|
|
2082 last;
|
|
2083 }
|
|
2084 else{
|
|
2085 #print STDERR "Offset going from ", $feature_offset, " to ", $feature_offset+$feature->[1]-$feature->[0]+1,"\n";
|
|
2086 $feature_offset += $feature->[1]-$feature->[0]+1;
|
|
2087 #print STDERR "Set feature offset to $feature_offset by adding ",$feature->[1],"-", $feature->[0],"+1\n";
|
|
2088 }
|
|
2089 }
|
|
2090 }
|
|
2091 else{
|
|
2092 # forward strand
|
|
2093
|
|
2094 # set up utr offset for correct CDS coordinates
|
|
2095 for(my $i = 0; $i <= $#feature_ranges; $i++){
|
|
2096 # All 5' utr exon
|
|
2097 if($feature_ranges[$i]->[1] < $feature_cds_min{$target_parent}){
|
|
2098 $feature_offset -= $feature_ranges[$i]->[1]-$feature_ranges[$i]->[0]+1;
|
|
2099 }
|
|
2100 # exon with the cds start
|
|
2101 elsif($feature_ranges[$i]->[1] >= $feature_cds_min{$target_parent} and
|
|
2102 $feature_ranges[$i]->[0] <= $feature_cds_min{$target_parent}){
|
|
2103 $feature_offset -= $feature_cds_min{$target_parent} - $feature_ranges[$i]->[0];
|
|
2104 last;
|
|
2105 }
|
|
2106 else{
|
|
2107 die "The CDS for $target_parent starts upstream ($feature_cds_max{$target_parent}) of the first exon",
|
|
2108 " (", $feature_ranges[$i]->[0], "), which is illogical. Please revise the GFF file provided.\n";
|
|
2109 }
|
|
2110 }
|
|
2111 for(my $i = 0; $i <= $#feature_ranges; $i++){
|
|
2112 my $feature = $feature_ranges[$i];
|
|
2113 # 3' of last coding position
|
|
2114 if($location > $feature_cds_max{$target_parent}){
|
|
2115 # find the exon with the stop codon
|
|
2116 while($feature->[1] < $feature_cds_max{$target_parent}){
|
|
2117 $feature = $feature_ranges[++$i];
|
|
2118 }
|
|
2119 my $post_offset = $feature->[0]-$feature_cds_max{$target_parent};
|
|
2120 while($location > $feature->[1]+$flanking_bases and
|
|
2121 $i < $#feature_ranges){
|
|
2122 $post_offset += $feature->[1]-$feature->[0]+1;
|
|
2123 $feature = $feature_ranges[++$i]; # find the 3' utr exon in which the variant is located
|
|
2124 }
|
|
2125 my $pos = $location-$feature->[0]+$post_offset;
|
|
2126 #print STDERR "Positive strand: got $pos for $location, exon #$i of $#feature_ranges, post_offset is $post_offset\n" if $location-$feature->[1] > $flanking_bases;
|
|
2127 my $off;
|
|
2128 if($location > $feature->[1]){ # after a UTR containing exon? set as .*DD+DD
|
|
2129 $off = $location-$feature->[1];
|
|
2130 $pos = ($post_offset+$feature->[1]-$feature->[0]+1)."+".$off;
|
|
2131 }
|
|
2132 elsif($location < $feature->[0]){ # before a total UTR exon? set as .*DD-DD
|
|
2133 $off = -($feature->[0]-$location);
|
|
2134 $pos = ($post_offset+1).$off;
|
|
2135 }
|
|
2136 else{
|
|
2137 if($location-$feature->[0] < $feature->[1]-$location){
|
|
2138 $off = $location-$feature->[0]+1; # +1 since HGVS skips right from -1 to +1 at exon boundary
|
|
2139 }
|
|
2140 else{
|
|
2141 $off = $location-$feature->[1]-1; # will be negative
|
|
2142 }
|
|
2143 }
|
|
2144 if(length($ref) == 1 and length($variant) == 1){
|
|
2145 # 3' UTR SNP
|
|
2146 record_snv("$target_parent\tc.*$pos",
|
|
2147 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2148 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n");
|
|
2149 }
|
|
2150 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
2151 # 3' UTR insertion
|
|
2152 record_snv("$target_parent\tc.*",
|
|
2153 hgvs_plus($pos,1),"_*",hgvs_plus($pos,2),
|
|
2154 "ins",substr($variant,1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2155 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n");
|
|
2156 }
|
|
2157 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
2158 my $delBases = substr($ref, 1);
|
|
2159 if(length($ref) == 2){
|
|
2160 # 3' UTR single base deletion
|
|
2161 record_snv("$target_parent\tc.*",hgvs_plus($pos,1),
|
|
2162 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2163 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n");
|
|
2164 }
|
|
2165 else{
|
|
2166 # longer 3' UTR deletion
|
|
2167 record_snv("$target_parent\tc.*",
|
|
2168 hgvs_plus($pos,1),"_*",hgvs_plus($pos,length($ref)-1),
|
|
2169 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2170 join("\t", prop_info_key($chr,$location,$ref,$variant, $off)),"\tNA\n");
|
|
2171 }
|
|
2172 }
|
|
2173 else{
|
|
2174 my $rc = reverse($ref);
|
|
2175 $rc=~tr/ACGT/TGCA/;
|
|
2176 if($rc eq $variant and length($variant) > 3){
|
|
2177 # 3' UTR inversion
|
|
2178 record_snv("$target_parent\tc.*$pos",
|
|
2179 "_*",hgvs_plus($pos,length($ref)-1),
|
|
2180 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2181 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n");
|
|
2182 last;
|
|
2183 }
|
|
2184 # complex substitution in 3' UTR
|
|
2185 record_snv("$target_parent\tc.*$pos",
|
|
2186 "_*",hgvs_plus($pos,length($ref)-1),
|
|
2187 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2188 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\tNA\n");
|
|
2189 }
|
|
2190 last;
|
|
2191 }
|
|
2192 # in the exon
|
|
2193 elsif($location >= $feature->[0] and $location <= $feature->[1]){
|
|
2194 my $pos = $feature_offset+$location-$feature->[0]+1;
|
|
2195 my $last_exon_base = $feature_offset+$feature->[1]-$feature->[0]+1;
|
|
2196 my $exon_edge_dist = $location-$feature->[0]+1; # equiv of HGVS +X or -X intron syntax, but for exons
|
|
2197 $exon_edge_dist = $location-$feature->[1]-1 if abs($location-$feature->[1]-1) < $exon_edge_dist; # pick closer of donor and acceptor sites
|
|
2198 #print STDERR "Got ", $location-$feature->[0]+1, "vs. ", $location-$feature->[1]-1, ": chose $exon_edge_dist\n";
|
|
2199 if($location < $feature_cds_min{$target_parent}){ #since there is no position 0, the pos is in UTR, subtract one
|
|
2200 $pos = hgvs_plus($pos, -1);
|
|
2201 }
|
|
2202 if(length($ref) == 1 and length($variant) == 1){
|
|
2203 # SNP
|
|
2204 record_snv("$target_parent\tc.$pos",
|
|
2205 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2206 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2207 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2208 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2209 }
|
|
2210 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
2211 # insertion
|
|
2212 record_snv("$target_parent\tc.$pos",
|
|
2213 "_",hgvs_plus_exon($pos,1,$last_exon_base),"ins",
|
|
2214 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2215 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2216 ($pos < 1 ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2217 #($pos < 1 ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2218 }
|
|
2219 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
2220 my $delBases = substr($ref, 1);
|
|
2221 # single nucleotide deletion
|
|
2222 if(length($delBases) == 1){
|
|
2223 record_snv("$target_parent\tc.",
|
|
2224 hgvs_plus_exon($pos,1,$last_exon_base),
|
|
2225 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2226 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2227 ($pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2228 #($pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2229 }
|
|
2230 # longer deletion
|
|
2231 else{
|
|
2232 $exon_edge_dist = $feature->[1]-$location-length($ref)-1 if abs($feature->[1]-$location-length($ref)-1) < $exon_edge_dist;
|
|
2233 record_snv("$target_parent\tc.",
|
|
2234 hgvs_plus_exon($pos,1,$last_exon_base),"_",
|
|
2235 hgvs_plus_exon($pos,length($ref)-1,$last_exon_base),
|
|
2236 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2237 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2238 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2239 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2240 }
|
|
2241 }
|
|
2242 else{
|
|
2243 $exon_edge_dist = $feature->[1]-$location-length($ref)-1 if abs($feature->[1]-$location-length($ref)-1) < $exon_edge_dist;
|
|
2244 my $rc = reverse($ref);
|
|
2245 $rc=~tr/ACGT/TGCA/;
|
|
2246 if($rc eq $variant and length($variant) > 3){
|
|
2247 # inversion
|
|
2248 record_snv("$target_parent\tc.$pos",
|
|
2249 "_",hgvs_plus_exon($pos,length($ref)-1, $last_exon_base),
|
|
2250 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2251 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2252 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2253 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2254 last;
|
|
2255 }
|
|
2256 # complex substitution
|
|
2257 record_snv("$target_parent\tc.$pos",
|
|
2258 "_",hgvs_plus_exon($pos, length($ref)-1, $last_exon_base),
|
|
2259 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2260 join("\t", prop_info_key($chr,$location,$ref,$variant,$exon_edge_dist)),"\t",
|
|
2261 ($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2262 #($pos+length($ref)-1 > $last_exon_base ? "p.?" : $pos < 1 or $pos > $last_exon_base ? "NA" : hgvs_protein_key($chr,$location,$ref,$variant,$pos,$strand,$trans_table)),"\n");
|
|
2263 }
|
|
2264 last;
|
|
2265 }
|
|
2266 # 5' of feature
|
|
2267 elsif($location < $feature->[0]){
|
|
2268 if(length($ref) == 1 and length($variant) == 1){
|
|
2269 # intronic SNP
|
|
2270 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2271 # Closer to donor site
|
|
2272 record_snv("$target_parent\tc.",$feature_offset,"+",
|
|
2273 ($location-$feature_ranges[$i-1]->[1]),
|
|
2274 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2275 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n");
|
|
2276 }
|
|
2277 else{
|
|
2278 # Closer to acceptor site
|
|
2279 record_snv("$target_parent\tc.",$feature_offset+1,
|
|
2280 ($location-$feature->[0]),
|
|
2281 "$ref>$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2282 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n");
|
|
2283 }
|
|
2284 }
|
|
2285 elsif(length($ref) == 1 and length($variant) > 1 and substr($variant, 0, 1) eq $ref){
|
|
2286 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2287 # intronic insertion near donor
|
|
2288 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]);
|
|
2289 record_snv("$target_parent\tc.",
|
|
2290 $pos,"_",hgvs_plus($pos,1),
|
|
2291 "ins",
|
|
2292 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2293 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n");
|
|
2294 }
|
|
2295 else{
|
|
2296 # intronic insertion near acceptor
|
|
2297 my $pos = ($feature_offset+1).($location-$feature->[0]);
|
|
2298 record_snv("$target_parent\tc.",
|
|
2299 $pos,"_",hgvs_plus($pos,1),
|
|
2300 "ins",
|
|
2301 substr($variant, 1),"\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2302 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n");
|
|
2303 }
|
|
2304 }
|
|
2305 elsif(length($ref) > 1 and length($variant) == 1 and substr($ref, 0, 1) eq $variant){
|
|
2306 # intronic deletion
|
|
2307 # single nucleotide deletion
|
|
2308 my $delBases = substr($ref, 1);
|
|
2309 if(length($ref) == 2){
|
|
2310 # single intronic deletion near donor
|
|
2311 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2312 my $off = $location-$feature_ranges[$i-1]->[1]+1;
|
|
2313 record_snv("$target_parent\tc.",
|
|
2314 $feature_offset,"+",$off,
|
|
2315 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2316 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n");
|
|
2317 }
|
|
2318 # single intronic deletion near acceptor
|
|
2319 else{
|
|
2320 my $pos = ($feature_offset+1);
|
|
2321 my $off = $location-$feature->[0];
|
|
2322 record_snv("$target_parent\tc.",
|
|
2323 hgvs_plus_exon($pos, $off, $pos),
|
|
2324 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2325 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off >= -2 ? "p.?" : "NA"),"\n");
|
|
2326 }
|
|
2327 }
|
|
2328 # longer deletion
|
|
2329 else{
|
|
2330 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2331 # long intronic deletion near donor
|
|
2332 my $off = $location-$feature_ranges[$i-1]->[1]+1;
|
|
2333 my $pos = $feature_offset."+".$off;
|
|
2334 record_snv("$target_parent\tc.",
|
|
2335 $pos,"_",hgvs_plus($pos,length($ref)-2),
|
|
2336 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2337 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off <= 2 ? "p.?" : "NA"),"\n");
|
|
2338 }
|
|
2339 else{
|
|
2340 # long intronic deletion near acceptor
|
|
2341 my $off = $location-$feature->[0]+1;
|
|
2342 my $pos = ($feature_offset+1).$off;
|
|
2343 record_snv("$target_parent\tc.",
|
|
2344 $pos,"_",hgvs_plus($pos,length($ref)-2),
|
|
2345 "del$delBases\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2346 join("\t", prop_info_key($chr,$location,$ref,$variant,$off)),"\t",($off+length($ref)-2 >= -2 ? "p.?" : "NA"),"\n");
|
|
2347 }
|
|
2348 }
|
|
2349 }
|
|
2350 else{
|
|
2351 my $rc = reverse($ref);
|
|
2352 $rc=~tr/ACGT/TGCA/;
|
|
2353 if($rc eq $variant and length($variant) > 3){
|
|
2354 # intronic inversion near donor site
|
|
2355 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2356 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]);
|
|
2357 record_snv("$target_parent\tc.",
|
|
2358 $pos,"_",hgvs_plus($pos,length($ref)-1),
|
|
2359 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2360 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n");
|
|
2361 }
|
|
2362 else{
|
|
2363 my $pos = ($feature_offset+1).($location-$feature->[0]);
|
|
2364 record_snv("$target_parent\tc.",
|
|
2365 $pos,"_",hgvs_plus($pos, length($ref)-1),
|
|
2366 "inv\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2367 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n");
|
|
2368 }
|
|
2369 last;
|
|
2370 }
|
|
2371 # Intronic complex substitution
|
|
2372 # Note: sub maybe have comma in it to denote two possible variants
|
|
2373 if($i != 0 and $location-$feature->[0] < -1*$flanking_bases){
|
|
2374 # complex intronic substitution near donor site
|
|
2375 my $pos = $feature_offset."+".($location-$feature_ranges[$i-1]->[1]);
|
|
2376 record_snv("$target_parent\tc.",
|
|
2377 $pos,"_",hgvs_plus($pos, length($ref)-1),
|
|
2378 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2379 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature_ranges[$i-1]->[1])),"\tNA\n");
|
|
2380 }
|
|
2381 else{
|
|
2382 # complex intronic substitution near acceptor site
|
|
2383 my $pos = ($feature_offset+1).($location-$feature->[0]);
|
|
2384 record_snv("$target_parent\tc.",
|
|
2385 $pos,"_",hgvs_plus($pos, length($ref)-1),
|
|
2386 "delins$variant\t$strand\t$chr\t$location\t$zygosity\t$quality\t$variant_depth\t$read_depth\t",
|
|
2387 join("\t", prop_info_key($chr,$location,$ref,$variant,$location-$feature->[0])),"\tNA\n");
|
|
2388 }
|
|
2389 }
|
|
2390 last;
|
|
2391 }
|
|
2392 else{
|
|
2393 # feature is past this exon
|
|
2394 $feature_offset += $feature->[1]-$feature->[0]+1;
|
|
2395 }
|
|
2396 }
|
|
2397 }
|
|
2398 } # for each variant on the line
|
|
2399 } # for each gene overlapping the site the VCF describes
|
|
2400 } # for each VCF line
|
|
2401 print STDERR "\n" unless $quiet;
|
|
2402 close(VCFIN);
|
|
2403
|
|
2404 # Before we can start printing the variants, we need to look at the phase information and calculate the real haplotype HGVS changes
|
|
2405 #if(keys %chr2phase){
|
|
2406 # Note that we could have samtools read-backed haplotype info, MNPs in the VCF, and pre-existing haplotypes in the input VCF (e.g. imputed or based on Mendelian inheritance where trios exist)
|
|
2407 # We need to create new disjoint sets of phased blocks from the (consistent) union of these data.
|
|
2408 # my $chr2phase2variants = combine_phase_data(\%chr2phase);
|
|
2409
|
|
2410 # TODO: Calculate protein HGVS syntax for each variant, now that all phase data has been incorporated
|
|
2411 #for my $chr (keys %$chr2phase2variants){
|
|
2412 # for my $phase (keys %{$chr2phase2variants{$chr}){
|
|
2413 # # apply all phased changes to the reference chromosomal seq
|
|
2414 # my $phased_seq = $seq{$chr}; #reference
|
|
2415 # # sort the variants from 3' to 5' so that edits after indels don't need adjustment in their ref coordinate
|
|
2416 # my @sorted_variants = sort {my($a_pos) = $a =~ /:(\d+):/; my($b_pos) = $b =~ /:(\d+):/; $b_pos <=> $a_pos} @{$chr2phase2variants{$chr}->{$phase}};
|
|
2417 # for my $variant (@sorted_variants){
|
|
2418 # }
|
|
2419 # }
|
|
2420 #}
|
|
2421 #}
|
|
2422
|
|
2423 # retrieve the MAF info en masse for each chromosome, as this is much more efficient
|
|
2424 my @out_lines;
|
|
2425 for my $snv (@snvs){
|
|
2426 chomp $snv;
|
|
2427 my @fields = split /\t/, $snv;
|
|
2428 # For CNVs, all the fields are already filled out
|
|
2429 if(@fields > 13){
|
|
2430 push @out_lines, join("\t", $feature_type{$fields[0]}, ($fields[0] =~ /\S/ ? $feature_length{$fields[0]} : "NA"), @fields);
|
|
2431 next;
|
|
2432 }
|
|
2433 my $variant_key = $fields[9];
|
|
2434 $fields[9] = join("\t", prop_info($dbsnp,$internal_snp,$variant_key));
|
|
2435 my $from = $fields[4];
|
|
2436 my $chr_pos_key = $fields[3].":".$from;
|
|
2437 my $to = $fields[4]; # true for SNPs and insertions
|
|
2438 my @variant_key = split /:/, $variant_key;
|
|
2439 # For deletions and complex variants, calculate the affected reference genome range and set the 'to'
|
|
2440 if(length($variant_key[2]) > 1){
|
|
2441 $to += length($variant_key[2])-1;
|
|
2442 }
|
|
2443 splice(@fields, 5, 0, $to);
|
|
2444
|
|
2445 # Otherwise expand the key into the relevant MAF values
|
|
2446 $fields[0] =~ s/\/chr.*$//; # some transcript ids are repeated... we expect "id/chr#" in the GTF file to distinguish these, but should get rid of them at reporting time
|
|
2447 # the offset from the nearest exon border if coding
|
|
2448 push @fields, ($#variant_key > 3 ? $variant_key[4] : "");
|
|
2449 # add gene name(s)
|
|
2450 push @fields, range2genes($fields[3], $from, $to+1);
|
|
2451 # add caveats
|
|
2452 my $c = $fields[3];
|
|
2453 if(not exists $chr2mappability{$c}){
|
|
2454 if($c =~ s/^chr//){
|
|
2455 # nothing more
|
|
2456 }
|
|
2457 else{
|
|
2458 $c = "chr$c";
|
|
2459 }
|
|
2460 }
|
|
2461 my $mappability_caveats = exists $chr2mappability{$c} ? $chr2mappability{$c}->fetch($fields[4], $fields[4]+1) : [];
|
|
2462 if(ref $mappability_caveats eq "ARRAY" and @$mappability_caveats){
|
|
2463 my %h;
|
|
2464 if(exists $chr2caveats{$chr_pos_key}){
|
|
2465 if($chr2caveats{$chr_pos_key} !~ /non-unique/){
|
|
2466 $chr2caveats{$chr_pos_key} = join("; ", grep {not $h{$_}++} @$mappability_caveats)."; ".$chr2caveats{$chr_pos_key};
|
|
2467 }
|
|
2468 }
|
|
2469 else{
|
|
2470 $chr2caveats{$chr_pos_key} = join("; ", grep {not $h{$_}++} @$mappability_caveats);
|
|
2471 }
|
|
2472 }
|
|
2473 push @fields, (exists $chr2caveats{$chr_pos_key} ? $chr2caveats{$chr_pos_key} : "");
|
|
2474 # add phase
|
|
2475 push @fields, find_phase($variant_key);
|
|
2476 push @out_lines, join("\t", $feature_type{$fields[0]}, $feature_length{$fields[0]}, @fields);
|
|
2477 }
|
|
2478
|
|
2479 # Now tabulate the rare variant numbers
|
|
2480 my %gene2rares;
|
|
2481 my %gene2aa_rares;
|
|
2482 for my $line (@out_lines){
|
|
2483 my @F = split /\t/, $line, -1;
|
|
2484 if($F[15] eq "NA" or $F[15] < $rare_variant_prop and (!$internal_snp or $F[17] < $rare_variant_prop)){
|
|
2485 my $gene_list = $internal_snp ? $F[20] : $F[19];
|
|
2486 next unless defined $gene_list;
|
|
2487 for my $g (split /; /, $gene_list){
|
|
2488 $gene2rares{$g}++;
|
|
2489 # Check the cDNA HGVS syntax for relevance
|
|
2490 if($F[3] =~ /c.\d+/ or # coding
|
|
2491 $F[3] =~ /c.\d+.*-[12]/ or # splicing acceptor
|
|
2492 $F[3] =~ /c.\d+\+[12345]/){ # splicing donor
|
|
2493 $gene2aa_rares{$g}++;
|
|
2494 }
|
|
2495 }
|
|
2496 }
|
|
2497 }
|
|
2498
|
|
2499 # Print the results
|
|
2500 for my $line (@out_lines){
|
|
2501 my @F = split /\t/, $line, -1;
|
|
2502 my $gene_list = $internal_snp ? $F[20] : $F[19];
|
|
2503 if(not defined $gene_list){
|
|
2504 print OUT join("\t", @F, "", ""), "\n"; next;
|
|
2505 }
|
|
2506
|
|
2507 my $max_gene_rare = 0;
|
|
2508 my $max_gene_aa_rare = 0;
|
|
2509 for my $g (split /; /, $gene_list){
|
|
2510 next unless exists $gene2rares{$g};
|
|
2511 if($gene2rares{$g} > $max_gene_rare){
|
|
2512 $max_gene_rare = $gene2rares{$g};
|
|
2513 }
|
|
2514 next unless exists $gene2aa_rares{$g};
|
|
2515 if($gene2aa_rares{$g} > $max_gene_aa_rare){
|
|
2516 $max_gene_aa_rare = $gene2aa_rares{$g};
|
|
2517 }
|
|
2518 }
|
|
2519 print OUT join("\t", @F, $max_gene_rare, $max_gene_aa_rare), "\n";
|
|
2520 }
|
|
2521 close(OUT);
|
|
2522
|
|
2523 sub range2genes{
|
|
2524 my ($c, $from, $to) = @_;
|
|
2525 if(not exists $gene_ids{$c}){
|
|
2526 if($c =~ s/^chr//){
|
|
2527 # nothing more
|
|
2528 }
|
|
2529 else{
|
|
2530 $c = "chr$c";
|
|
2531 }
|
|
2532 }
|
|
2533 if(exists $gene_ids{$c}){
|
|
2534 my %have;
|
|
2535 return join("; ", grep {not $have{$_}++} @{$gene_ids{$c}->fetch($from, $to+1)});
|
|
2536 }
|
|
2537 else{
|
|
2538 return "";
|
|
2539 }
|
|
2540 }
|
|
2541 sub combine_phase_data{
|
|
2542 my ($phases) = @_; # map from variant to its phase data
|
|
2543
|
|
2544 # Create a reverse mapping from phase regions to their variants
|
|
2545 my %chr2phase_region2variants;
|
|
2546 my @variants = keys %$phases;
|
|
2547 for my $variant (@variants){
|
|
2548 my ($chr) = $variant =~ /^\S+?-(\S+):/;
|
|
2549 $chr2phase_region2variants{$chr} = {} if not exists $chr2phase_region2variants{$chr};
|
|
2550 for my $phase_region (split /,/, $phases->{$variant}){
|
|
2551 $chr2phase_region2variants{$chr}->{$phase_region} = [] if not exists $chr2phase_region2variants{$chr}->{$phase_region};
|
|
2552 push @{$chr2phase_region2variants{$phase_region}}, $variant;
|
|
2553 }
|
|
2554 }
|
|
2555
|
|
2556 # Now for each phased block known so far, see if any variant in it is also part of another block
|
|
2557 # If so, do a union since phasing is both transitive and commutative.
|
|
2558 # The quickest way to do this is to check for overlapping intervals, then check for common members amongst those that do overlap
|
|
2559 for my $chr (keys %chr2phase_region2variants){
|
|
2560 my @ordered_phase_regions = sort {my($a_pos) = $a =~ /:(\d+)/; my($b_pos) = $b =~ /:(\d+)/; $a_pos <=> $b_pos} keys %{$chr2phase_region2variants{$chr}};
|
|
2561 my $sets = new DisjointSets(scalar(@ordered_phase_regions));
|
|
2562
|
|
2563 for (my $i = 0; $i < $#ordered_phase_regions; $i++){
|
|
2564 my ($start, $stop, $variant) = $ordered_phase_regions[$i];
|
|
2565 for (my $j = $i+1; $j <= $#ordered_phase_regions; $j++){
|
|
2566 my ($start2, $stop2, $variant2) = $ordered_phase_regions[$j];
|
|
2567 if($start2 > $stop){ # won't overlap any regions after this in the sorted list
|
|
2568 last;
|
|
2569 }
|
|
2570 # If we get here, it is implicit that $stop >= $start2 and $start < $stop2, i.e. there is overlap
|
|
2571 # Now check if there is a shared variant (otherwise we might erroneously join blocks from different physical chromosomal arms)
|
|
2572 my $have_shared_variant = 0;
|
|
2573 my $overlapping_phase_region = $ordered_phase_regions[$j];
|
|
2574 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$i]}}){
|
|
2575 if($phases->{$variant} =~ /\b$overlapping_phase_region\b/){
|
|
2576 $have_shared_variant = 1; last;
|
|
2577 }
|
|
2578 }
|
|
2579 # sanity check that there aren't conflicting variants in the new block (i.e. two different variants in the same position)
|
|
2580 my %pos2base;
|
|
2581 my $have_conflicting_variant = 0;
|
|
2582 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$i]}}, @{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$j]}}){
|
|
2583 my ($pos, $base) = $variant =~ /(\d+):(.+?)$/;
|
|
2584 if(exists $pos2base{$pos} and $pos2base{$pos} ne $base){
|
|
2585 # conflict, note with a caveat
|
|
2586 if(exists $chr2caveats{"$chr:$pos"}){
|
|
2587 $chr2caveats{"$chr:$pos"} .= "; inconsistent haplotype phasing" unless $chr2caveats{"$chr:$pos"} =~ /inconsistent haplotype phasing/;
|
|
2588 }
|
|
2589 else{
|
|
2590 $chr2caveats{"$chr:$pos"} = "inconsistent haplotype phasing";
|
|
2591 }
|
|
2592 $have_conflicting_variant ||= 1;
|
|
2593 }
|
|
2594 elsif(not exists $pos2base{$pos}){
|
|
2595 $pos2base{$pos} = $base;
|
|
2596 }
|
|
2597 }
|
|
2598
|
|
2599 $sets->union($i+1, $j+1) if $have_shared_variant and not $have_conflicting_variant; # indexes are one-based for sets rather than 0-based
|
|
2600 }
|
|
2601 }
|
|
2602 my $phase_sets = $sets->sets; #disjoint haplotype sets
|
|
2603 my %region_counts;
|
|
2604 for my $phase_set (@$phase_sets){
|
|
2605 next if scalar(@$phase_set) == 1; # No change to existing phase region (is disjoint from all others)
|
|
2606 # Generate a new haploblock to replace the old ones that are being merged
|
|
2607 my $merged_start = 10000000000;
|
|
2608 my $merged_end = 0;
|
|
2609 for my $ordered_phase_region_index (@$phase_set){
|
|
2610 my ($start, $end) = $ordered_phase_regions[$ordered_phase_region_index-1] =~ /(\d+)-(\d+)$/;
|
|
2611 $merged_start = $start if $start < $merged_start;
|
|
2612 $merged_end = $end if $end > $merged_end;
|
|
2613 }
|
|
2614 # At the start of the region is a unique prefix so we can tell the arms apart if two haploblocks have the exact same boundary
|
|
2615 my $region_count = $region_counts{"$merged_start-$merged_end"}++;
|
|
2616 my $merged_haploblock_name = "Y$region_count-$chr:$merged_start-$merged_end";
|
|
2617 # Assign this new name to overwrite the premerge values for each variant contained within
|
|
2618 for my $ordered_phase_region_index (@$phase_set){
|
|
2619 for my $variant (@{$chr2phase_region2variants{$chr}->{$ordered_phase_regions[$ordered_phase_region_index-1]}}){ # incl. one-based set correction in 0-based array index
|
|
2620 print STDERR "Merging $variant from ", $phases->{$variant}, " into new block $merged_haploblock_name\n";
|
|
2621 $phases->{$variant} = $merged_haploblock_name;
|
|
2622 }
|
|
2623 }
|
|
2624 }
|
|
2625 # TODO: if there are overlapping phase blocks still, but with different variants in the same position, we can infer that they are on the opposite strands...
|
|
2626 }
|
|
2627 }
|
|
2628
|
|
2629 # Sees if the positions of the variant are in the range of a phased haplotype, returning which allele it belongs to
|
|
2630 sub find_phase{
|
|
2631 my ($chr,$pos,$ref,$variant) = split /:/, $_[0];
|
|
2632 return "" if length($ref) != length($variant); # Can only deal with SNPs (and broken down MNPs) for now
|
|
2633 for(my $i = 0; $i < length($ref); $i++){
|
|
2634 my $key = "$chr:".($pos+$i).":".substr($variant, $i, 1);
|
|
2635 #print STDERR "Checking phase for $key\n" if $pos == 12907379;
|
|
2636 if(exists $chr2phase{$key}){
|
|
2637 #print STDERR "returning phase data $chr2phase{$key}\n";
|
|
2638 return $chr2phase{$key};
|
|
2639 }
|
|
2640 elsif(exists $chr2phase{"chr".$key}){
|
|
2641 #print STDERR "returning phase data ", $chr2phase{"chr".$key}, "\n";
|
|
2642 return $chr2phase{"chr".$key};
|
|
2643 }
|
|
2644 }
|
|
2645 return "";
|
|
2646 }
|
|
2647
|
|
2648 sub find_earliest_index{
|
|
2649 # employs a binary search to find the smallest index that must be the starting point of a search of [start,end] elements sorted in an array by start
|
|
2650 my ($query, $array) = @_;
|
|
2651
|
|
2652 return 0 if $query < $array->[0]->[0];
|
|
2653
|
|
2654 my ($left, $right, $prevCenter) = (0, $#$array, -1);
|
|
2655
|
|
2656 while(1){
|
|
2657 my $center = int (($left + $right)/2);
|
|
2658
|
|
2659 my $cmp = $query <=> $array->[$center]->[0] || ($center == 0 || $query != $array->[$center-1]->[0] ? 0 : -1);
|
|
2660
|
|
2661 return $center if $cmp == 0;
|
|
2662 if ($center == $prevCenter) {
|
|
2663 return $left;
|
|
2664 }
|
|
2665 $right = $center if $cmp < 0;
|
|
2666 $left = $center if $cmp > 0;
|
|
2667 $prevCenter = $center;
|
|
2668 }
|
|
2669 }
|
|
2670
|