456
|
1 """
|
|
2 Custom data generator for COBRA models.
|
|
3
|
|
4 This script loads a COBRA model (built-in or custom), optionally applies
|
|
5 medium and gene nomenclature settings, derives reaction-related metadata
|
|
6 (GPR rules, formulas, bounds, objective coefficients, medium membership,
|
|
7 and compartments for ENGRO2), and writes a tabular summary.
|
|
8 """
|
|
9
|
406
|
10 import os
|
|
11 import csv
|
|
12 import cobra
|
|
13 import argparse
|
|
14 import pandas as pd
|
|
15 import utils.general_utils as utils
|
456
|
16 from typing import Optional, Tuple, List
|
418
|
17 import utils.model_utils as modelUtils
|
426
|
18 import logging
|
406
|
19
|
|
20 ARGS : argparse.Namespace
|
|
21 def process_args(args: List[str] = None) -> argparse.Namespace:
|
|
22 """
|
|
23 Parse command-line arguments for CustomDataGenerator.
|
|
24 """
|
|
25
|
|
26 parser = argparse.ArgumentParser(
|
|
27 usage="%(prog)s [options]",
|
|
28 description="Generate custom data from a given model"
|
|
29 )
|
|
30
|
|
31 parser.add_argument("--out_log", type=str, required=True,
|
|
32 help="Output log file")
|
|
33
|
|
34 parser.add_argument("--model", type=str,
|
|
35 help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)")
|
|
36 parser.add_argument("--input", type=str,
|
|
37 help="Custom model file (JSON or XML)")
|
|
38 parser.add_argument("--name", type=str, required=True,
|
|
39 help="Model name (default or custom)")
|
|
40
|
|
41 parser.add_argument("--medium_selector", type=str, required=True,
|
|
42 help="Medium selection option")
|
|
43
|
|
44 parser.add_argument("--gene_format", type=str, default="Default",
|
|
45 help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ")
|
|
46
|
|
47 parser.add_argument("--out_tabular", type=str,
|
|
48 help="Output file for the merged dataset (CSV or XLSX)")
|
|
49
|
|
50 parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__),
|
|
51 help="Tool directory (passed from Galaxy as $__tool_directory__)")
|
|
52
|
|
53
|
|
54 return parser.parse_args(args)
|
|
55
|
|
56 ################################- INPUT DATA LOADING -################################
|
|
57 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model:
|
|
58 """
|
456
|
59 Loads a custom model from a file, either in JSON, XML, MAT, or YML format.
|
406
|
60
|
|
61 Args:
|
|
62 file_path : The path to the file containing the custom model.
|
|
63 ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour.
|
|
64
|
|
65 Raises:
|
|
66 DataErr : if the file is in an invalid format or cannot be opened for whatever reason.
|
|
67
|
|
68 Returns:
|
|
69 cobra.Model : the model, if successfully opened.
|
|
70 """
|
|
71 ext = ext if ext else file_path.ext
|
|
72 try:
|
|
73 if ext is utils.FileFormat.XML:
|
|
74 return cobra.io.read_sbml_model(file_path.show())
|
|
75
|
|
76 if ext is utils.FileFormat.JSON:
|
|
77 return cobra.io.load_json_model(file_path.show())
|
|
78
|
456
|
79 if ext is utils.FileFormat.MAT:
|
|
80 return cobra.io.load_matlab_model(file_path.show())
|
|
81
|
|
82 if ext is utils.FileFormat.YML:
|
|
83 return cobra.io.load_yaml_model(file_path.show())
|
|
84
|
406
|
85 except Exception as e: raise utils.DataErr(file_path, e.__str__())
|
456
|
86 raise utils.DataErr(
|
|
87 file_path,
|
|
88 f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported."
|
|
89 )
|
406
|
90
|
|
91
|
|
92 ###############################- FILE SAVING -################################
|
|
93 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None:
|
|
94 """
|
|
95 Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath.
|
|
96
|
|
97 Args:
|
|
98 data : the data to be written to the file.
|
|
99 file_path : the path to the .csv file.
|
|
100 fieldNames : the names of the fields (columns) in the .csv file.
|
|
101
|
|
102 Returns:
|
|
103 None
|
|
104 """
|
|
105 with open(file_path.show(), 'w', newline='') as csvfile:
|
|
106 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
107 writer.writeheader()
|
|
108
|
|
109 for key, value in data.items():
|
|
110 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
111
|
|
112 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None:
|
|
113 """
|
|
114 Saves any dictionary-shaped data in a .csv file created at the given file_path as string.
|
|
115
|
|
116 Args:
|
|
117 data : the data to be written to the file.
|
|
118 file_path : the path to the .csv file.
|
|
119 fieldNames : the names of the fields (columns) in the .csv file.
|
|
120
|
|
121 Returns:
|
|
122 None
|
|
123 """
|
|
124 with open(file_path, 'w', newline='') as csvfile:
|
|
125 writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab")
|
|
126 writer.writeheader()
|
|
127
|
|
128 for key, value in data.items():
|
|
129 writer.writerow({ fieldNames[0] : key, fieldNames[1] : value })
|
|
130
|
|
131 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None:
|
456
|
132 """
|
|
133 Save a pandas DataFrame as a tab-separated file, creating directories as needed.
|
|
134
|
|
135 Args:
|
|
136 df: The DataFrame to write.
|
|
137 path: Destination file path (will be written as TSV).
|
|
138
|
|
139 Raises:
|
|
140 DataErr: If writing the output fails for any reason.
|
|
141
|
|
142 Returns:
|
|
143 None
|
|
144 """
|
406
|
145 try:
|
|
146 os.makedirs(os.path.dirname(path) or ".", exist_ok=True)
|
|
147 df.to_csv(path, sep="\t", index=False)
|
|
148 except Exception as e:
|
|
149 raise utils.DataErr(path, f"failed writing tabular output: {e}")
|
|
150
|
|
151
|
|
152 ###############################- ENTRY POINT -################################
|
|
153 def main(args:List[str] = None) -> None:
|
|
154 """
|
456
|
155 Initialize and generate custom data based on the frontend input arguments.
|
406
|
156
|
|
157 Returns:
|
|
158 None
|
|
159 """
|
456
|
160 # Parse args from frontend (Galaxy XML)
|
406
|
161 global ARGS
|
|
162 ARGS = process_args(args)
|
|
163
|
|
164
|
|
165 if ARGS.input:
|
456
|
166 # Load a custom model from file
|
406
|
167 model = load_custom_model(
|
|
168 utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext)
|
|
169 else:
|
456
|
170 # Load a built-in model
|
406
|
171
|
|
172 try:
|
|
173 model_enum = utils.Model[ARGS.model] # e.g., Model['ENGRO2']
|
|
174 except KeyError:
|
|
175 raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model)
|
|
176
|
|
177 # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models)
|
|
178 try:
|
|
179 model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir)
|
|
180 except Exception as e:
|
|
181 # Wrap/normalize load errors as DataErr for consistency
|
|
182 raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}")
|
|
183
|
|
184 # Determine final model name: explicit --name overrides, otherwise use the model id
|
|
185
|
|
186 model_name = ARGS.name if ARGS.name else ARGS.model
|
|
187
|
|
188 if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default":
|
|
189 df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0)
|
|
190 ARGS.medium_selector = ARGS.medium_selector.replace("_", " ")
|
|
191 medium = df_mediums[[ARGS.medium_selector]]
|
|
192 medium = medium[ARGS.medium_selector].to_dict()
|
|
193
|
456
|
194 # Reset all medium reactions lower bound to zero
|
406
|
195 for rxn_id, _ in model.medium.items():
|
|
196 model.reactions.get_by_id(rxn_id).lower_bound = float(0.0)
|
|
197
|
456
|
198 # Apply selected medium uptake bounds (negative for uptake)
|
406
|
199 for reaction, value in medium.items():
|
|
200 if value is not None:
|
|
201 model.reactions.get_by_id(reaction).lower_bound = -float(value)
|
|
202
|
444
|
203 if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default":
|
426
|
204 logging.basicConfig(level=logging.INFO)
|
|
205 logger = logging.getLogger(__name__)
|
406
|
206
|
426
|
207 model = modelUtils.translate_model_genes(
|
|
208 model=model,
|
444
|
209 mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}),
|
445
|
210 target_nomenclature=ARGS.gene_format,
|
426
|
211 source_nomenclature='HGNC_symbol',
|
|
212 logger=logger
|
|
213 )
|
406
|
214
|
|
215 # generate data
|
418
|
216 rules = modelUtils.generate_rules(model, asParsed = False)
|
|
217 reactions = modelUtils.generate_reactions(model, asParsed = False)
|
|
218 bounds = modelUtils.generate_bounds(model)
|
|
219 medium = modelUtils.get_medium(model)
|
426
|
220 objective_function = modelUtils.extract_objective_coefficients(model)
|
|
221
|
406
|
222 if ARGS.name == "ENGRO2":
|
418
|
223 compartments = modelUtils.generate_compartments(model)
|
406
|
224
|
426
|
225 df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"])
|
|
226 df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"])
|
406
|
227
|
|
228 df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"})
|
|
229 df_medium = medium.rename(columns = {"reaction": "ReactionID"})
|
456
|
230 df_medium["InMedium"] = True
|
406
|
231
|
|
232 merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer")
|
|
233 merged = merged.merge(df_bounds, on = "ReactionID", how = "outer")
|
426
|
234 merged = merged.merge(objective_function, on = "ReactionID", how = "outer")
|
406
|
235 if ARGS.name == "ENGRO2":
|
|
236 merged = merged.merge(compartments, on = "ReactionID", how = "outer")
|
|
237 merged = merged.merge(df_medium, on = "ReactionID", how = "left")
|
|
238
|
|
239 merged["InMedium"] = merged["InMedium"].fillna(False)
|
|
240
|
|
241 merged = merged.sort_values(by = "InMedium", ascending = False)
|
|
242
|
|
243 if not ARGS.out_tabular:
|
|
244 raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular)
|
|
245 save_as_tabular_df(merged, ARGS.out_tabular)
|
|
246 expected = ARGS.out_tabular
|
|
247
|
|
248 # verify output exists and non-empty
|
|
249 if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0:
|
456
|
250 raise utils.DataErr(expected, "Output not created or empty")
|
406
|
251
|
|
252 print("CustomDataGenerator: completed successfully")
|
|
253
|
|
254 if __name__ == '__main__':
|
|
255 main() |