| 456 | 1 """ | 
|  | 2 Custom data generator for COBRA models. | 
|  | 3 | 
|  | 4 This script loads a COBRA model (built-in or custom), optionally applies | 
|  | 5 medium and gene nomenclature settings, derives reaction-related metadata | 
|  | 6 (GPR rules, formulas, bounds, objective coefficients, medium membership, | 
|  | 7 and compartments for ENGRO2), and writes a tabular summary. | 
|  | 8 """ | 
|  | 9 | 
| 406 | 10 import os | 
|  | 11 import csv | 
|  | 12 import cobra | 
|  | 13 import argparse | 
|  | 14 import pandas as pd | 
|  | 15 import utils.general_utils as utils | 
| 456 | 16 from typing import Optional, Tuple, List | 
| 418 | 17 import utils.model_utils as modelUtils | 
| 426 | 18 import logging | 
| 406 | 19 | 
|  | 20 ARGS : argparse.Namespace | 
|  | 21 def process_args(args: List[str] = None) -> argparse.Namespace: | 
|  | 22     """ | 
|  | 23     Parse command-line arguments for CustomDataGenerator. | 
|  | 24     """ | 
|  | 25 | 
|  | 26     parser = argparse.ArgumentParser( | 
|  | 27         usage="%(prog)s [options]", | 
|  | 28         description="Generate custom data from a given model" | 
|  | 29     ) | 
|  | 30 | 
|  | 31     parser.add_argument("--out_log", type=str, required=True, | 
|  | 32                         help="Output log file") | 
|  | 33 | 
|  | 34     parser.add_argument("--model", type=str, | 
|  | 35                         help="Built-in model identifier (e.g., ENGRO2, Recon, HMRcore)") | 
|  | 36     parser.add_argument("--input", type=str, | 
|  | 37                         help="Custom model file (JSON or XML)") | 
|  | 38     parser.add_argument("--name", type=str, required=True, | 
|  | 39                         help="Model name (default or custom)") | 
|  | 40 | 
|  | 41     parser.add_argument("--medium_selector", type=str, required=True, | 
|  | 42                         help="Medium selection option") | 
|  | 43 | 
|  | 44     parser.add_argument("--gene_format", type=str, default="Default", | 
|  | 45                         help="Gene nomenclature format: Default (original), ENSNG, HGNC_SYMBOL, HGNC_ID, ENTREZ") | 
|  | 46 | 
|  | 47     parser.add_argument("--out_tabular", type=str, | 
|  | 48                         help="Output file for the merged dataset (CSV or XLSX)") | 
|  | 49 | 
|  | 50     parser.add_argument("--tool_dir", type=str, default=os.path.dirname(__file__), | 
|  | 51                         help="Tool directory (passed from Galaxy as $__tool_directory__)") | 
|  | 52 | 
|  | 53 | 
|  | 54     return parser.parse_args(args) | 
|  | 55 | 
|  | 56 ################################- INPUT DATA LOADING -################################ | 
|  | 57 def load_custom_model(file_path :utils.FilePath, ext :Optional[utils.FileFormat] = None) -> cobra.Model: | 
|  | 58     """ | 
| 456 | 59     Loads a custom model from a file, either in JSON, XML, MAT, or YML format. | 
| 406 | 60 | 
|  | 61     Args: | 
|  | 62         file_path : The path to the file containing the custom model. | 
|  | 63         ext : explicit file extension. Necessary for standard use in galaxy because of its weird behaviour. | 
|  | 64 | 
|  | 65     Raises: | 
|  | 66         DataErr : if the file is in an invalid format or cannot be opened for whatever reason. | 
|  | 67 | 
|  | 68     Returns: | 
|  | 69         cobra.Model : the model, if successfully opened. | 
|  | 70     """ | 
|  | 71     ext = ext if ext else file_path.ext | 
|  | 72     try: | 
|  | 73         if ext is utils.FileFormat.XML: | 
|  | 74             return cobra.io.read_sbml_model(file_path.show()) | 
|  | 75 | 
|  | 76         if ext is utils.FileFormat.JSON: | 
|  | 77             return cobra.io.load_json_model(file_path.show()) | 
|  | 78 | 
| 456 | 79         if ext is utils.FileFormat.MAT: | 
|  | 80             return cobra.io.load_matlab_model(file_path.show()) | 
|  | 81 | 
|  | 82         if ext is utils.FileFormat.YML: | 
|  | 83             return cobra.io.load_yaml_model(file_path.show()) | 
|  | 84 | 
| 406 | 85     except Exception as e: raise utils.DataErr(file_path, e.__str__()) | 
| 456 | 86     raise utils.DataErr( | 
|  | 87         file_path, | 
|  | 88         f"Unrecognized format '{file_path.ext}'. Only JSON, XML, MAT, YML are supported." | 
|  | 89     ) | 
| 406 | 90 | 
|  | 91 | 
|  | 92 ###############################- FILE SAVING -################################ | 
|  | 93 def save_as_csv_filePath(data :dict, file_path :utils.FilePath, fieldNames :Tuple[str, str]) -> None: | 
|  | 94     """ | 
|  | 95     Saves any dictionary-shaped data in a .csv file created at the given file_path as FilePath. | 
|  | 96 | 
|  | 97     Args: | 
|  | 98         data : the data to be written to the file. | 
|  | 99         file_path : the path to the .csv file. | 
|  | 100         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 101 | 
|  | 102     Returns: | 
|  | 103         None | 
|  | 104     """ | 
|  | 105     with open(file_path.show(), 'w', newline='') as csvfile: | 
|  | 106         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 107         writer.writeheader() | 
|  | 108 | 
|  | 109         for key, value in data.items(): | 
|  | 110             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 111 | 
|  | 112 def save_as_csv(data :dict, file_path :str, fieldNames :Tuple[str, str]) -> None: | 
|  | 113     """ | 
|  | 114     Saves any dictionary-shaped data in a .csv file created at the given file_path as string. | 
|  | 115 | 
|  | 116     Args: | 
|  | 117         data : the data to be written to the file. | 
|  | 118         file_path : the path to the .csv file. | 
|  | 119         fieldNames : the names of the fields (columns) in the .csv file. | 
|  | 120 | 
|  | 121     Returns: | 
|  | 122         None | 
|  | 123     """ | 
|  | 124     with open(file_path, 'w', newline='') as csvfile: | 
|  | 125         writer = csv.DictWriter(csvfile, fieldnames = fieldNames, dialect="excel-tab") | 
|  | 126         writer.writeheader() | 
|  | 127 | 
|  | 128         for key, value in data.items(): | 
|  | 129             writer.writerow({ fieldNames[0] : key, fieldNames[1] : value }) | 
|  | 130 | 
|  | 131 def save_as_tabular_df(df: pd.DataFrame, path: str) -> None: | 
| 456 | 132     """ | 
|  | 133     Save a pandas DataFrame as a tab-separated file, creating directories as needed. | 
|  | 134 | 
|  | 135     Args: | 
|  | 136         df: The DataFrame to write. | 
|  | 137         path: Destination file path (will be written as TSV). | 
|  | 138 | 
|  | 139     Raises: | 
|  | 140         DataErr: If writing the output fails for any reason. | 
|  | 141 | 
|  | 142     Returns: | 
|  | 143         None | 
|  | 144     """ | 
| 406 | 145     try: | 
|  | 146         os.makedirs(os.path.dirname(path) or ".", exist_ok=True) | 
|  | 147         df.to_csv(path, sep="\t", index=False) | 
|  | 148     except Exception as e: | 
|  | 149         raise utils.DataErr(path, f"failed writing tabular output: {e}") | 
|  | 150 | 
|  | 151 | 
|  | 152 ###############################- ENTRY POINT -################################ | 
|  | 153 def main(args:List[str] = None) -> None: | 
|  | 154     """ | 
| 456 | 155     Initialize and generate custom data based on the frontend input arguments. | 
| 406 | 156 | 
|  | 157     Returns: | 
|  | 158         None | 
|  | 159     """ | 
| 456 | 160     # Parse args from frontend (Galaxy XML) | 
| 406 | 161     global ARGS | 
|  | 162     ARGS = process_args(args) | 
|  | 163 | 
|  | 164 | 
|  | 165     if ARGS.input: | 
| 456 | 166         # Load a custom model from file | 
| 406 | 167         model = load_custom_model( | 
|  | 168             utils.FilePath.fromStrPath(ARGS.input), utils.FilePath.fromStrPath(ARGS.name).ext) | 
|  | 169     else: | 
| 456 | 170         # Load a built-in model | 
| 406 | 171 | 
|  | 172         try: | 
|  | 173             model_enum = utils.Model[ARGS.model]  # e.g., Model['ENGRO2'] | 
|  | 174         except KeyError: | 
|  | 175             raise utils.ArgsErr("model", "one of Recon/ENGRO2/HMRcore/Custom_model", ARGS.model) | 
|  | 176 | 
|  | 177         # Load built-in model (Model.getCOBRAmodel uses tool_dir to locate local models) | 
|  | 178         try: | 
|  | 179             model = model_enum.getCOBRAmodel(toolDir=ARGS.tool_dir) | 
|  | 180         except Exception as e: | 
|  | 181             # Wrap/normalize load errors as DataErr for consistency | 
|  | 182             raise utils.DataErr(ARGS.model, f"failed loading built-in model: {e}") | 
|  | 183 | 
|  | 184     # Determine final model name: explicit --name overrides, otherwise use the model id | 
|  | 185 | 
|  | 186     model_name = ARGS.name if ARGS.name else ARGS.model | 
|  | 187 | 
|  | 188     if ARGS.name == "ENGRO2" and ARGS.medium_selector != "Default": | 
|  | 189         df_mediums = pd.read_csv(ARGS.tool_dir + "/local/medium/medium.csv", index_col = 0) | 
|  | 190         ARGS.medium_selector = ARGS.medium_selector.replace("_", " ") | 
|  | 191         medium = df_mediums[[ARGS.medium_selector]] | 
|  | 192         medium = medium[ARGS.medium_selector].to_dict() | 
|  | 193 | 
| 456 | 194         # Reset all medium reactions lower bound to zero | 
| 406 | 195         for rxn_id, _ in model.medium.items(): | 
|  | 196             model.reactions.get_by_id(rxn_id).lower_bound = float(0.0) | 
|  | 197 | 
| 456 | 198         # Apply selected medium uptake bounds (negative for uptake) | 
| 406 | 199         for reaction, value in medium.items(): | 
|  | 200             if value is not None: | 
|  | 201                 model.reactions.get_by_id(reaction).lower_bound = -float(value) | 
|  | 202 | 
| 444 | 203     if (ARGS.name == "Recon" or ARGS.name == "ENGRO2") and ARGS.gene_format != "Default": | 
| 426 | 204         logging.basicConfig(level=logging.INFO) | 
|  | 205         logger = logging.getLogger(__name__) | 
| 406 | 206 | 
| 426 | 207         model = modelUtils.translate_model_genes( | 
|  | 208             model=model, | 
| 444 | 209             mapping_df= pd.read_csv(ARGS.tool_dir + "/local/mappings/genes_human.csv", dtype={'entrez_id': str}), | 
| 445 | 210             target_nomenclature=ARGS.gene_format, | 
| 426 | 211             source_nomenclature='HGNC_symbol', | 
|  | 212             logger=logger | 
|  | 213         ) | 
| 406 | 214 | 
|  | 215     # generate data | 
| 418 | 216     rules = modelUtils.generate_rules(model, asParsed = False) | 
|  | 217     reactions = modelUtils.generate_reactions(model, asParsed = False) | 
|  | 218     bounds = modelUtils.generate_bounds(model) | 
|  | 219     medium = modelUtils.get_medium(model) | 
| 426 | 220     objective_function = modelUtils.extract_objective_coefficients(model) | 
|  | 221 | 
| 406 | 222     if ARGS.name == "ENGRO2": | 
| 418 | 223         compartments = modelUtils.generate_compartments(model) | 
| 406 | 224 | 
| 426 | 225     df_rules = pd.DataFrame(list(rules.items()), columns = ["ReactionID", "GPR"]) | 
|  | 226     df_reactions = pd.DataFrame(list(reactions.items()), columns = ["ReactionID", "Formula"]) | 
| 406 | 227 | 
|  | 228     df_bounds = bounds.reset_index().rename(columns = {"index": "ReactionID"}) | 
|  | 229     df_medium = medium.rename(columns = {"reaction": "ReactionID"}) | 
| 456 | 230     df_medium["InMedium"] = True | 
| 406 | 231 | 
|  | 232     merged = df_reactions.merge(df_rules, on = "ReactionID", how = "outer") | 
|  | 233     merged = merged.merge(df_bounds, on = "ReactionID", how = "outer") | 
| 426 | 234     merged = merged.merge(objective_function, on = "ReactionID", how = "outer") | 
| 406 | 235     if ARGS.name == "ENGRO2": | 
|  | 236         merged = merged.merge(compartments, on = "ReactionID", how = "outer") | 
|  | 237     merged = merged.merge(df_medium, on = "ReactionID", how = "left") | 
|  | 238 | 
|  | 239     merged["InMedium"] = merged["InMedium"].fillna(False) | 
|  | 240 | 
|  | 241     merged = merged.sort_values(by = "InMedium", ascending = False) | 
|  | 242 | 
|  | 243     if not ARGS.out_tabular: | 
|  | 244         raise utils.ArgsErr("out_tabular", "output path (--out_tabular) is required when output_format == tabular", ARGS.out_tabular) | 
|  | 245     save_as_tabular_df(merged, ARGS.out_tabular) | 
|  | 246     expected = ARGS.out_tabular | 
|  | 247 | 
|  | 248     # verify output exists and non-empty | 
|  | 249     if not expected or not os.path.exists(expected) or os.path.getsize(expected) == 0: | 
| 456 | 250         raise utils.DataErr(expected, "Output not created or empty") | 
| 406 | 251 | 
|  | 252     print("CustomDataGenerator: completed successfully") | 
|  | 253 | 
|  | 254 if __name__ == '__main__': | 
|  | 255     main() |