Mercurial > repos > ebi-gxa > seurat_run_pca
view seurat_run_pca.xml @ 4:3fd59cdcb477 draft
"planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit a1ad1ddd9b8e4db5bb82c3accae8311e0e488b19"
author | ebi-gxa |
---|---|
date | Fri, 27 Nov 2020 13:49:23 +0000 |
parents | e534a73143b1 |
children | 9547ebb03f6f |
line wrap: on
line source
<tool id="seurat_run_pca" name="Seurat RunPCA" version="@SEURAT_VERSION@+galaxy0"> <description>run a PCA dimensionality reduction</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <expand macro="version" /> <command detect_errors="exit_code"><![CDATA[ seurat-run-pca.R @INPUT_OBJECT@ #if $pc_genes: --pc-genes '$pc_genes' #end if #if $pc_cells --pc-cells '$pc_cells' #end if @OUTPUT_OBJECT@ --output-embeddings-file output_embed --output-loadings-file output_load --output-stdev-file output_sdev #if $pcs_compute: --pcs-compute '$pcs_compute' #end if #if $reverse_pca '$reverse_pca' #end if ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param name="pc_genes" type="data" format="tabular,txt" optional="True" label="Genes to scale" help="File with gene names to scale/center. Default is all genes in object@data." /> <param label="Cells to scale" optional="true" name="pc_cells" argument="--pc-cells" type="text" help="File with cell names to scale/center. Default is all cells in object@data."/> <param name="pcs_compute" type="integer" optional="True" label="Principal components" help="Total Number of PCs to compute and store (20 by default). Less PCs might be faster, but will explain less variance."/> <param label="Reverse PCA" optional="true" name="reverse_pca" argument="--reverse-pca" type="boolean" truevalue="--reverse-pca" checked="false" help="Run PCA on reverse matrix (gene x cell; FALSE by default means cell x gene)."/> </inputs> <outputs> <expand macro="output_files"/> <data name="output_embed" format="csv" from_work_dir="output_embed" label="${tool.name} on ${on_string}: Seurat Embeddings"/> <data name="output_load" format="csv" from_work_dir="output_load" label="${tool.name} on ${on_string}: Seurat Loadings"/> <data name="output_sdev" format="csv" from_work_dir="output_sdev" label="${tool.name} on ${on_string}: Seurat Std dev"/> </outputs> <tests> <test> <param name="rds_seurat_file" ftype="rdata" value="scaled_seurat.rds"/> <output name="rds_seurat_file" ftype="rdata" value="pca_seurat.rds" compare="sim_size" delta="10000000"/> <output name="output_embed" value="pca_embeddings.csv" compare="sim_size" delta="10000000" /> <output name="output_load" value="pca_loadings.csv" compare="sim_size" delta="10000000" /> <output name="output_sdev" value="pca_stdev.txt" compare="sim_size" delta="10000000" /> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** This tool runs a PCA dimensionality reduction. @SEURAT_INTRO@ ----- **Inputs** * Seurat RDS object, normalised and scaled potentially. * Genes used to scale. File of gene names to scale/center. Default is all genes in object. * Principal components to compute. Total Number of PCs to compute and store (20 by default). Less PCs might be faster, but will explain less variance. * Use imputed. Boolean indicating whether to run PCA on imputed values or not. ----- **Outputs** * Seurat RDS object with PCA calculations and embeddings. * Embeddings on CSV file. File with a csv-format embeddings table with principal components by cell. * Loadings on CSV file. File with a csv-format loadings table with principal components by gene. * Standard deviation on CSV file. Contains principal components std. deviations. .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ @VERSION_HISTORY@ ]]></help> <expand macro="citations" /> </tool>