Mercurial > repos > florianbegusch > qiime2_all
comparison qiime_sample-classifier_regress-samples.xml @ 0:09b7bcb72fa7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 24 May 2018 02:11:44 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:09b7bcb72fa7 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_regress-samples" name="qiime sample-classifier regress-samples" version="2018.4"> | |
3 <description> - Supervised learning regressor.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2018.4">qiime2</requirement> | |
6 </requirements> | |
7 <command> | |
8 <![CDATA[ | |
9 qiime sample-classifier regress-samples --i-table=$itable | |
10 | |
11 #def list_dict_to_string(list_dict): | |
12 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
13 #for d in list_dict[1:]: | |
14 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
15 #end for | |
16 #return $file_list | |
17 #end def | |
18 | |
19 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) --m-metadata-column="$mmetadatacolumn" | |
20 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
21 | |
22 #if str($pnjobs): | |
23 --p-n-jobs="$pnjobs" | |
24 #end if | |
25 | |
26 | |
27 #if $pstep: | |
28 --p-step=$pstep | |
29 #end if | |
30 | |
31 #if $pstratify: | |
32 --p-stratify | |
33 #else | |
34 --p-no-stratify | |
35 #end if | |
36 | |
37 #if $poptimizefeatureselection: | |
38 --p-optimize-feature-selection | |
39 #else | |
40 --p-no-optimize-feature-selection | |
41 #end if | |
42 | |
43 #if $ptestsize: | |
44 --p-test-size=$ptestsize | |
45 #end if | |
46 --o-visualization=ovisualization | |
47 #if str($pestimator) != 'None': | |
48 --p-estimator=$pestimator | |
49 #end if | |
50 | |
51 #if $pnestimators: | |
52 --p-n-estimators=$pnestimators | |
53 #end if | |
54 | |
55 #if str($cmdconfig) != 'None': | |
56 --cmd-config=$cmdconfig | |
57 #end if | |
58 | |
59 #if $pcv: | |
60 --p-cv=$pcv | |
61 #end if | |
62 | |
63 #if $pparametertuning: | |
64 --p-parameter-tuning | |
65 #else | |
66 --p-no-parameter-tuning | |
67 #end if | |
68 | |
69 #if str($prandomstate): | |
70 --p-random-state="$prandomstate" | |
71 #end if | |
72 ; | |
73 qiime tools export ovisualization.qzv --output-dir out && mkdir -p '$ovisualization.files_path' | |
74 && cp -r out/* '$ovisualization.files_path' | |
75 && mv '$ovisualization.files_path/index.html' '$ovisualization' | |
76 ]]> | |
77 </command> | |
78 <inputs> | |
79 <param format="qza,no_unzip.zip" label="--i-table: FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
80 <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> | |
81 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [required]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | |
82 </repeat> | |
83 <param label="--m-metadata-column: MetadataColumn[Numeric] Column from metadata file or artifact viewable as metadata. Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> | |
84 | |
85 <param label="--p-test-size: Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2"/> | |
86 | |
87 <param label="--p-step: If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05"/> | |
88 | |
89 <param label="--p-cv: Number of k-fold cross-validations to perform. [default: 5]" name="pcv" optional="True" type="integer" value="5"/> | |
90 | |
91 <param label="--p-random-state: Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="text"/> | |
92 | |
93 <param label="--p-n-estimators: Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100"/> | |
94 <param label="--p-estimator: Estimator method to use for sample | |
95 prediction. [default: | |
96 RandomForestRegressor]" name="pestimator" optional="True" type="select"> | |
97 <option selected="True" value="None">Selection is Optional</option> | |
98 <option value="Ridge">Ridge</option> | |
99 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
100 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
101 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
102 <option value="LinearSVR">LinearSVR</option> | |
103 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
104 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
105 <option value="SVR">SVR</option> | |
106 <option value="ElasticNet">ElasticNet</option> | |
107 <option value="Lasso">Lasso</option> | |
108 </param> | |
109 | |
110 <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" checked="False" type="boolean"/> | |
111 | |
112 <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" checked="False" type="boolean"/> | |
113 | |
114 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" checked="False" type="boolean"/> | |
115 | |
116 <param label="--cmd-config: Use config file for command options" name="cmdconfig" optional="True" type="data"/> | |
117 </inputs> | |
118 <outputs> | |
119 <data format="html" label="${tool.name} on ${on_string}: visualization.qzv" name="ovisualization"/> | |
120 </outputs> | |
121 <help> | |
122 <![CDATA[ | |
123 Supervised learning regressor. | |
124 ------------------------------- | |
125 | |
126 Predicts a continuous sample metadata column using a supervised learning | |
127 regressor. Splits input data into training and test sets. The training set | |
128 is used to train and test the estimator using a stratified k-fold cross- | |
129 validation scheme. This includes optional steps for automated feature | |
130 extraction and hyperparameter optimization. The test set validates | |
131 classification accuracy of the optimized estimator. Outputs classification | |
132 results for test set. For more details on the learning algorithm, see | |
133 http://scikit-learn.org/stable/supervised_learning.html | |
134 | |
135 Parameters | |
136 ---------- | |
137 table : FeatureTable[Frequency] | |
138 Feature table containing all features that should be used for target | |
139 prediction. | |
140 metadata : MetadataColumn[Numeric] | |
141 Numeric metadata column to use as prediction target. | |
142 test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
143 Fraction of input samples to exclude from training set and use for | |
144 classifier testing. | |
145 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
146 If optimize_feature_selection is True, step is the percentage of | |
147 features to remove at each iteration. | |
148 cv : Int % Range(1, None), optional | |
149 Number of k-fold cross-validations to perform. | |
150 random_state : Int, optional | |
151 Seed used by random number generator. | |
152 n_estimators : Int % Range(1, None), optional | |
153 Number of trees to grow for estimation. More trees will improve | |
154 predictive accuracy up to a threshold level, but will also increase | |
155 time and memory requirements. This parameter only affects ensemble | |
156 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
157 GradientBoosting. | |
158 estimator : Str % Choices({'AdaBoostRegressor', 'ElasticNet', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'KNeighborsRegressor', 'Lasso', 'LinearSVR', 'RandomForestRegressor', 'Ridge', 'SVR'}), optional | |
159 Estimator method to use for sample prediction. | |
160 optimize_feature_selection : Bool, optional | |
161 Automatically optimize input feature selection using recursive feature | |
162 elimination. | |
163 stratify : Bool, optional | |
164 Evenly stratify training and test data among metadata categories. If | |
165 True, all values in column must match at least two samples. | |
166 parameter_tuning : Bool, optional | |
167 Automatically tune hyperparameters using random grid search. | |
168 | |
169 Returns | |
170 ------- | |
171 visualization : Visualization | |
172 \ | |
173 ]]> | |
174 </help> | |
175 </tool> |