0
|
1 <?xml version="1.0" ?>
|
9
|
2 <tool id="qiime_gneiss_gradient-clustering" name="qiime gneiss gradient-clustering" version="2019.7">
|
0
|
3 <description> - Hierarchical clustering using gradient information.</description>
|
|
4 <requirements>
|
9
|
5 <requirement type="package" version="2019.7">qiime2</requirement>
|
0
|
6 </requirements>
|
|
7 <command><![CDATA[
|
|
8 qiime gneiss gradient-clustering
|
|
9
|
|
10 --i-table=$itable
|
|
11 --m-gradient-column="$mgradientcolumn"
|
|
12
|
|
13
|
9
|
14 #if $mgradientfile:
|
|
15 --m-gradient-file=$mgradientfile
|
2
|
16 #end if
|
0
|
17
|
|
18 #if $pnoweighted:
|
|
19 --p-no-weighted
|
|
20 #end if
|
|
21
|
|
22 --o-clustering=oclustering
|
|
23 ;
|
|
24 cp oclustering.qza $oclustering
|
|
25 ]]></command>
|
|
26 <inputs>
|
|
27 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency | RelativeFrequency | Composition] The feature table containing the samples in which the columns will be clustered. [required]" name="itable" optional="False" type="data"/>
|
|
28 <param label="--m-gradient-column: COLUMN MetadataColumn[Numeric] Contains gradient values to sort the features and samples. [required]" name="mgradientcolumn" optional="False" type="text"/>
|
|
29 <param label="--p-no-weighted : Specifies if abundance or presence/absence information should be used to perform the clustering. [default: False]" name="pnoweighted" selected="False" type="boolean"/>
|
|
30
|
9
|
31 <param label="--m-gradient-file: " name="mgradientfile" optional="True" type="data" format="tabular,qza,no_unzip.zip" />
|
0
|
32
|
|
33 </inputs>
|
|
34 <outputs>
|
|
35 <data format="qza" label="${tool.name} on ${on_string}: clustering.qza" name="oclustering"/>
|
|
36 </outputs>
|
|
37 <help><![CDATA[
|
|
38 Hierarchical clustering using gradient information.
|
|
39 ###################################################
|
|
40
|
|
41 Build a bifurcating tree that represents a hierarchical clustering of
|
|
42 features. The hiearchical clustering uses Ward hierarchical clustering
|
|
43 based on the mean difference of gradients that each feature is observed in.
|
|
44 This method is primarily used to sort the table to reveal the underlying
|
|
45 block-like structures.
|
|
46
|
|
47 Parameters
|
|
48 ----------
|
|
49 table : FeatureTable[Frequency | RelativeFrequency | Composition]
|
|
50 The feature table containing the samples in which the columns will be
|
|
51 clustered.
|
|
52 gradient : MetadataColumn[Numeric]
|
|
53 Contains gradient values to sort the features and samples.
|
|
54 weighted : Bool, optional
|
|
55 Specifies if abundance or presence/absence information should be used
|
|
56 to perform the clustering.
|
|
57
|
|
58 Returns
|
|
59 -------
|
|
60 clustering : Hierarchy
|
|
61 A hierarchy of feature identifiers where each tip corresponds to the
|
|
62 feature identifiers in the table. This tree can contain tip ids that
|
|
63 are not present in the table, but all feature ids in the table must be
|
|
64 present in this tree.
|
|
65 ]]></help>
|
|
66 <macros>
|
|
67 <import>qiime_citation.xml</import>
|
|
68 </macros>
|
|
69 <expand macro="qiime_citation"/>
|
|
70 </tool>
|