5
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 suppressPackageStartupMessages(library("optparse"))
|
|
4
|
|
5 option_list <- list(
|
6
|
6 make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"),
|
|
7 make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"),
|
|
8 make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"),
|
|
9 make_option(c("--input"), action="store", dest="input", help="Temperature data for selected location"),
|
|
10 make_option(c("--insect"), action="store", dest="insect", help="Insect name"),
|
|
11 make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"),
|
10
|
12 make_option(c("--life_stages"), action="store", dest="life_stages", help="Selected life stages for plotting"),
|
|
13 make_option(c("--life_stages_adult"), action="store", dest="life_stages_adult", default=NULL, help="Adult life stages for plotting"),
|
16
|
14 make_option(c("--life_stages_nymph"), action="store", dest="life_stages_nymph", default=NULL, help="Nymph life stages for plotting"),
|
6
|
15 make_option(c("--location"), action="store", dest="location", help="Selected location"),
|
|
16 make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
|
|
17 make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
|
27
|
18 make_option(c("--num_days"), action="store", dest="num_days", type="integer", help="Total number of days in the temperature dataset"),
|
6
|
19 make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"),
|
|
20 make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"),
|
27
|
21 make_option(c("--output"), action="store", dest="output", help="Dataset containing analyzed data"),
|
6
|
22 make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
|
|
23 make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
|
10
|
24 make_option(c("--plot_generations_separately"), action="store", dest="plot_generations_separately", help="Plot Plot P, F1 and F2 as separate lines or pool across them"),
|
|
25 make_option(c("--plot_std_error"), action="store", dest="plot_std_error", help="Plot Standard error"),
|
27
|
26 make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
|
6
|
27 make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)")
|
5
|
28 )
|
|
29
|
8
|
30 parser <- OptionParser(usage="%prog [options] file", option_list=option_list);
|
|
31 args <- parse_args(parser, positional_arguments=TRUE);
|
|
32 opt <- args$options;
|
5
|
33
|
27
|
34 add_daylight_length = function(temperature_data_frame, num_rows) {
|
5
|
35 # Return a vector of daylight length (photoperido profile) for
|
|
36 # the number of days specified in the input temperature data
|
|
37 # (from Forsythe 1995).
|
8
|
38 p = 0.8333;
|
|
39 latitude = temperature_data_frame$LATITUDE[1];
|
|
40 daylight_length_vector = NULL;
|
5
|
41 for (i in 1:num_rows) {
|
|
42 # Get the day of the year from the current row
|
|
43 # of the temperature data for computation.
|
8
|
44 doy = temperature_data_frame$DOY[i];
|
|
45 theta = 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186)));
|
|
46 phi = asin(0.39795 * cos(theta));
|
5
|
47 # Compute the length of daylight for the day of the year.
|
8
|
48 darkness_length = 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)));
|
|
49 daylight_length_vector[i] = 24 - darkness_length;
|
5
|
50 }
|
|
51 # Append daylight_length_vector as a new column to temperature_data_frame.
|
27
|
52 temperature_data_frame = append_vector(temperature_data_frame, daylight_length_vector, "DAYLEN");
|
8
|
53 return(temperature_data_frame);
|
5
|
54 }
|
|
55
|
27
|
56 append_vector = function(data_frame, vec, new_column_name) {
|
|
57 num_columns = dim(data_frame)[2];
|
|
58 current_column_names = colnames(data_frame);
|
|
59 # Append vector vec as a new column to data_frame.
|
|
60 data_frame[,num_columns+1] = vec;
|
|
61 # Reset the column names with the additional column for later access.
|
|
62 colnames(data_frame) = append(current_column_names, new_column_name);
|
|
63 return(data_frame);
|
|
64 }
|
|
65
|
8
|
66 get_date_labels = function(temperature_data_frame, num_rows) {
|
|
67 # Keep track of the years to see if spanning years.
|
|
68 month_labels = list();
|
|
69 current_month_label = NULL;
|
|
70 for (i in 1:num_rows) {
|
|
71 # Get the year and month from the date which
|
|
72 # has the format YYYY-MM-DD.
|
|
73 date = format(temperature_data_frame$DATE[i]);
|
|
74 items = strsplit(date, "-")[[1]];
|
|
75 month = items[2];
|
|
76 month_label = month.abb[as.integer(month)];
|
|
77 if (!identical(current_month_label, month_label)) {
|
|
78 month_labels[length(month_labels)+1] = month_label;
|
|
79 current_month_label = month_label;
|
|
80 }
|
|
81 }
|
|
82 return(c(unlist(month_labels)));
|
6
|
83 }
|
|
84
|
19
|
85 get_file_path = function(life_stage, base_name, life_stage_nymph=NULL, life_stage_adult=NULL) {
|
|
86 if (!is.null(life_stage_nymph)) {
|
|
87 lsi = get_life_stage_index(life_stage, life_stage_nymph=life_stage_nymph);
|
|
88 file_name = paste(lsi, tolower(life_stage_nymph), base_name, sep="_");
|
|
89 } else if (!is.null(life_stage_adult)) {
|
|
90 lsi = get_life_stage_index(life_stage, life_stage_adult=life_stage_adult);
|
|
91 file_name = paste(lsi, tolower(life_stage_adult), base_name, sep="_");
|
|
92 } else {
|
|
93 lsi = get_life_stage_index(life_stage);
|
|
94 file_name = paste(lsi, base_name, sep="_");
|
|
95 }
|
|
96 file_path = paste("output_dir", file_name, sep="/");
|
|
97 return(file_path);
|
|
98 }
|
|
99
|
18
|
100 get_life_stage_index = function(life_stage, life_stage_nymph=NULL, life_stage_adult=NULL) {
|
|
101 # Name collection elements so that they
|
|
102 # are displayed in logical order.
|
|
103 if (life_stage=="Egg") {
|
|
104 lsi = "01";
|
|
105 } else if (life_stage=="Nymph") {
|
|
106 if (life_stage_nymph=="Young") {
|
|
107 lsi = "02";
|
|
108 } else if (life_stage_nymph=="Old") {
|
|
109 lsi = "03";
|
|
110 } else if (life_stage_nymph=="Total") {
|
|
111 lsi="04";
|
|
112 }
|
|
113 } else if (life_stage=="Adult") {
|
|
114 if (life_stage_adult=="Pre-vittelogenic") {
|
|
115 lsi = "05";
|
|
116 } else if (life_stage_adult=="Vittelogenic") {
|
|
117 lsi = "06";
|
|
118 } else if (life_stage_adult=="Diapausing") {
|
|
119 lsi = "07";
|
|
120 } else if (life_stage_adult=="Total") {
|
|
121 lsi = "08";
|
|
122 }
|
|
123 } else if (life_stage=="Total") {
|
|
124 lsi = "09";
|
|
125 }
|
|
126 return(lsi);
|
|
127 }
|
|
128
|
20
|
129 get_mean_and_std_error = function(p_replications, f1_replications, f2_replications) {
|
|
130 # P mean.
|
|
131 p_m = apply(p_replications, 1, mean);
|
|
132 # P standard error.
|
|
133 p_se = apply(p_replications, 1, sd) / sqrt(opt$replications);
|
|
134 # F1 mean.
|
|
135 f1_m = apply(f1_replications, 1, mean);
|
|
136 # F1 standard error.
|
|
137 f1_se = apply(f1_replications, 1, sd) / sqrt(opt$replications);
|
|
138 # F2 mean.
|
|
139 f2_m = apply(f2_replications, 1, mean);
|
|
140 # F2 standard error.
|
|
141 f2_se = apply(f2_replications, 1, sd) / sqrt(opt$replications);
|
|
142 return(list(p_m, p_se, f1_m, f1_se, f2_m, f2_se))
|
|
143 }
|
|
144
|
5
|
145 get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) {
|
8
|
146 # Base development threshold for Brown Marmorated Stink Bug
|
5
|
147 # insect phenology model.
|
8
|
148 threshold = 14.17;
|
5
|
149 # Minimum temperature for current row.
|
8
|
150 curr_min_temp = temperature_data_frame$TMIN[row];
|
5
|
151 # Maximum temperature for current row.
|
8
|
152 curr_max_temp = temperature_data_frame$TMAX[row];
|
5
|
153 # Mean temperature for current row.
|
8
|
154 curr_mean_temp = 0.5 * (curr_min_temp + curr_max_temp);
|
5
|
155 # Initialize degree day accumulation
|
8
|
156 averages = 0;
|
6
|
157 if (curr_max_temp < threshold) {
|
8
|
158 averages = 0;
|
5
|
159 }
|
|
160 else {
|
|
161 # Initialize hourly temperature.
|
8
|
162 T = NULL;
|
5
|
163 # Initialize degree hour vector.
|
8
|
164 dh = NULL;
|
5
|
165 # Daylight length for current row.
|
8
|
166 y = temperature_data_frame$DAYLEN[row];
|
5
|
167 # Darkness length.
|
8
|
168 z = 24 - y;
|
5
|
169 # Lag coefficient.
|
8
|
170 a = 1.86;
|
5
|
171 # Darkness coefficient.
|
8
|
172 b = 2.20;
|
5
|
173 # Sunrise time.
|
8
|
174 risetime = 12 - y / 2;
|
5
|
175 # Sunset time.
|
8
|
176 settime = 12 + y / 2;
|
|
177 ts = (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp;
|
5
|
178 for (i in 1:24) {
|
|
179 if (i > risetime && i < settime) {
|
|
180 # Number of hours after Tmin until sunset.
|
8
|
181 m = i - 5;
|
|
182 T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp;
|
5
|
183 if (T[i] < 8.4) {
|
8
|
184 dh[i] = 0;
|
5
|
185 }
|
|
186 else {
|
8
|
187 dh[i] = T[i] - 8.4;
|
5
|
188 }
|
|
189 }
|
6
|
190 else if (i > settime) {
|
8
|
191 n = i - settime;
|
|
192 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z);
|
5
|
193 if (T[i] < 8.4) {
|
8
|
194 dh[i] = 0;
|
5
|
195 }
|
|
196 else {
|
8
|
197 dh[i] = T[i] - 8.4;
|
5
|
198 }
|
|
199 }
|
|
200 else {
|
8
|
201 n = i + 24 - settime;
|
|
202 T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z);
|
5
|
203 if (T[i] < 8.4) {
|
8
|
204 dh[i] = 0;
|
5
|
205 }
|
|
206 else {
|
8
|
207 dh[i] = T[i] - 8.4;
|
5
|
208 }
|
|
209 }
|
|
210 }
|
8
|
211 averages = sum(dh) / 24;
|
5
|
212 }
|
6
|
213 return(c(curr_mean_temp, averages))
|
5
|
214 }
|
|
215
|
6
|
216 mortality.adult = function(temperature) {
|
|
217 if (temperature < 12.7) {
|
8
|
218 mortality.probability = 0.002;
|
6
|
219 }
|
|
220 else {
|
8
|
221 mortality.probability = temperature * 0.0005 + 0.02;
|
6
|
222 }
|
|
223 return(mortality.probability)
|
5
|
224 }
|
|
225
|
|
226 mortality.egg = function(temperature) {
|
|
227 if (temperature < 12.7) {
|
8
|
228 mortality.probability = 0.8;
|
5
|
229 }
|
|
230 else {
|
8
|
231 mortality.probability = 0.8 - temperature / 40.0;
|
6
|
232 if (mortality.probability < 0) {
|
8
|
233 mortality.probability = 0.01;
|
5
|
234 }
|
|
235 }
|
6
|
236 return(mortality.probability)
|
5
|
237 }
|
|
238
|
|
239 mortality.nymph = function(temperature) {
|
|
240 if (temperature < 12.7) {
|
8
|
241 mortality.probability = 0.03;
|
5
|
242 }
|
|
243 else {
|
8
|
244 mortality.probability = temperature * 0.0008 + 0.03;
|
5
|
245 }
|
8
|
246 return(mortality.probability);
|
6
|
247 }
|
|
248
|
|
249 parse_input_data = function(input_file, num_rows) {
|
|
250 # Read in the input temperature datafile into a data frame.
|
8
|
251 temperature_data_frame = read.csv(file=input_file, header=T, strip.white=TRUE, sep=",");
|
|
252 num_columns = dim(temperature_data_frame)[2];
|
6
|
253 if (num_columns == 6) {
|
|
254 # The input data has the following 6 columns:
|
|
255 # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX
|
|
256 # Set the column names for access when adding daylight length..
|
8
|
257 colnames(temperature_data_frame) = c("LATITUDE","LONGITUDE", "DATE", "DOY", "TMIN", "TMAX");
|
27
|
258 current_column_names = colnames(temperature_data_frame);
|
6
|
259 # Add a column containing the daylight length for each day.
|
27
|
260 temperature_data_frame = add_daylight_length(temperature_data_frame, num_rows);
|
6
|
261 }
|
8
|
262 return(temperature_data_frame);
|
5
|
263 }
|
|
264
|
10
|
265 render_chart = function(date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval,
|
20
|
266 replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL,
|
|
267 life_stages_adult=NULL, life_stages_nymph=NULL) {
|
10
|
268 if (chart_type=="pop_size_by_life_stage") {
|
|
269 if (life_stage=="Total") {
|
|
270 title = paste(insect, ": Reps", replications, ":", life_stage, "Pop :", location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" ");
|
|
271 legend_text = c("Egg", "Nymph", "Adult");
|
|
272 columns = c(4, 2, 1);
|
|
273 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3);
|
|
274 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3);
|
|
275 lines(days, group2, lwd=2, lty=1, col=2);
|
|
276 lines(days, group3, lwd=2, lty=1, col=4);
|
|
277 axis(1, at=c(1:length(date_labels)) * 30 - 15, cex.axis=3, labels=date_labels);
|
|
278 axis(2, cex.axis=3);
|
|
279 if (plot_std_error=="yes") {
|
|
280 # Standard error for group.
|
|
281 lines(days, group+group_std_error, lty=2);
|
|
282 lines(days, group-group_std_error, lty=2);
|
|
283 # Standard error for group2.
|
|
284 lines(days, group2+group2_std_error, col=2, lty=2);
|
|
285 lines(days, group2-group2_std_error, col=2, lty=2);
|
|
286 # Standard error for group3.
|
|
287 lines(days, group3+group3_std_error, col=4, lty=2);
|
|
288 lines(days, group3-group3_std_error, col=4, lty=2);
|
|
289 }
|
|
290 } else {
|
|
291 if (life_stage=="Egg") {
|
|
292 title = paste(insect, ": Reps", replications, ":", life_stage, "Pop :", location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" ");
|
|
293 legend_text = c(life_stage);
|
15
|
294 columns = c(4);
|
10
|
295 } else if (life_stage=="Nymph") {
|
16
|
296 stage = paste(life_stages_nymph, "Nymph Pop :", sep=" ");
|
10
|
297 title = paste(insect, ": Reps", replications, ":", stage, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" ");
|
16
|
298 legend_text = c(paste(life_stages_nymph, life_stage, sep=" "));
|
10
|
299 columns = c(2);
|
|
300 } else if (life_stage=="Adult") {
|
|
301 stage = paste(life_stages_adult, "Adult Pop", sep=" ");
|
|
302 title = paste(insect, ": Reps", replications, ":", stage, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" ");
|
|
303 legend_text = c(paste(life_stages_adult, life_stage, sep=" "));
|
|
304 columns = c(1);
|
|
305 }
|
|
306 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3);
|
|
307 legend("topleft", legend_text, lty=c(1), col="black", cex=3);
|
|
308 axis(1, at=c(1:length(date_labels)) * 30 - 15, cex.axis=3, labels=date_labels);
|
|
309 axis(2, cex.axis=3);
|
|
310 if (plot_std_error=="yes") {
|
|
311 # Standard error for group.
|
|
312 lines(days, group+group_std_error, lty=2);
|
|
313 lines(days, group-group_std_error, lty=2);
|
|
314 }
|
|
315 }
|
|
316 } else if (chart_type=="pop_size_by_generation") {
|
|
317 if (life_stage=="Total") {
|
|
318 title_str = ": Total Pop by Gen :";
|
|
319 } else if (life_stage=="Egg") {
|
|
320 title_str = ": Egg Pop by Gen :";
|
|
321 } else if (life_stage=="Nymph") {
|
16
|
322 title_str = paste(":", life_stages_nymph, "Nymph Pop by Gen", ":", sep=" ");
|
10
|
323 } else if (life_stage=="Adult") {
|
|
324 title_str = paste(":", life_stages_adult, "Adult Pop by Gen", ":", sep=" ");
|
|
325 }
|
|
326 title = paste(insect, ": Reps", replications, title_str, location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" ");
|
8
|
327 legend_text = c("P", "F1", "F2");
|
|
328 columns = c(1, 2, 4);
|
10
|
329 plot(days, group, main=title, type="l", ylim=c(0, maxval), axes=F, lwd=2, xlab="", ylab="", cex=3, cex.lab=3, cex.axis=3, cex.main=3);
|
|
330 legend("topleft", legend_text, lty=c(1, 1, 1), col=columns, cex=3);
|
|
331 lines(days, group2, lwd=2, lty=1, col=2);
|
|
332 lines(days, group3, lwd=2, lty=1, col=4);
|
|
333 axis(1, at=c(1:length(date_labels)) * 30 - 15, cex.axis=3, labels=date_labels);
|
|
334 axis(2, cex.axis=3);
|
|
335 if (plot_std_error=="yes") {
|
|
336 # Standard error for group.
|
|
337 lines(days, group+group_std_error, lty=2);
|
|
338 lines(days, group-group_std_error, lty=2);
|
|
339 # Standard error for group2.
|
|
340 lines(days, group2+group2_std_error, col=2, lty=2);
|
|
341 lines(days, group2-group2_std_error, col=2, lty=2);
|
|
342 # Standard error for group3.
|
|
343 lines(days, group3+group3_std_error, col=4, lty=2);
|
|
344 lines(days, group3-group3_std_error, col=4, lty=2);
|
|
345 }
|
5
|
346 }
|
|
347 }
|
|
348
|
10
|
349 # Determine if we're plotting generations separately.
|
|
350 if (opt$plot_generations_separately=="yes") {
|
|
351 plot_generations_separately = TRUE;
|
|
352 } else {
|
|
353 plot_generations_separately = FALSE;
|
|
354 }
|
|
355 # Read the temperature data into a data frame.
|
8
|
356 temperature_data_frame = parse_input_data(opt$input, opt$num_days);
|
10
|
357 # Get the date labels for plots.
|
|
358 date_labels = get_date_labels(temperature_data_frame, opt$num_days);
|
|
359 # All latitude values are the same, so get the value for plots from the first row.
|
8
|
360 latitude = temperature_data_frame$LATITUDE[1];
|
20
|
361 # Determine the specified life stages for processing.
|
10
|
362 # Split life_stages into a list of strings for plots.
|
|
363 life_stages_str = as.character(opt$life_stages);
|
|
364 life_stages = strsplit(life_stages_str, ",")[[1]];
|
|
365 # Determine the data we need to generate for plotting.
|
|
366 process_eggs = FALSE;
|
|
367 process_nymphs = FALSE;
|
20
|
368 process_young_nymphs = FALSE;
|
|
369 process_old_nymphs = FALSE;
|
|
370 process_total_nymphs = FALSE;
|
10
|
371 process_adults = FALSE;
|
23
|
372 process_previttelogenic_adults = FALSE;
|
|
373 process_vittelogenic_adults = FALSE;
|
20
|
374 process_diapausing_adults = FALSE;
|
|
375 process_total_adults = FALSE;
|
10
|
376 for (life_stage in life_stages) {
|
|
377 if (life_stage=="Total") {
|
|
378 process_eggs = TRUE;
|
|
379 process_nymphs = TRUE;
|
|
380 process_adults = TRUE;
|
|
381 } else if (life_stage=="Egg") {
|
|
382 process_eggs = TRUE;
|
|
383 } else if (life_stage=="Nymph") {
|
|
384 process_nymphs = TRUE;
|
|
385 } else if (life_stage=="Adult") {
|
|
386 process_adults = TRUE;
|
|
387 }
|
|
388 }
|
20
|
389 if (process_nymphs) {
|
|
390 # Split life_stages_nymph into a list of strings for plots.
|
|
391 life_stages_nymph_str = as.character(opt$life_stages_nymph);
|
|
392 life_stages_nymph = strsplit(life_stages_nymph_str, ",")[[1]];
|
23
|
393 for (life_stage_nymph in life_stages_nymph) {
|
20
|
394 if (life_stage_nymph=="Young") {
|
|
395 process_young_nymphs = TRUE;
|
|
396 } else if (life_stage_nymph=="Old") {
|
|
397 process_old_nymphs = TRUE;
|
|
398 } else if (life_stage_nymph=="Total") {
|
|
399 process_total_nymphs = TRUE;
|
|
400 }
|
|
401 }
|
|
402 }
|
16
|
403 if (process_adults) {
|
|
404 # Split life_stages_adult into a list of strings for plots.
|
|
405 life_stages_adult_str = as.character(opt$life_stages_adult);
|
|
406 life_stages_adult = strsplit(life_stages_adult_str, ",")[[1]];
|
23
|
407 for (life_stage_adult in life_stages_adult) {
|
|
408 if (life_stage_adult=="Pre-vittelogenic") {
|
|
409 process_previttelogenic_adults = TRUE;
|
24
|
410 } else if (life_stage_adult=="Vittelogenic") {
|
23
|
411 process_vittelogenic_adults = TRUE;
|
20
|
412 } else if (life_stage_adult=="Diapausing") {
|
|
413 process_diapausing_adults = TRUE;
|
|
414 } else if (life_stage_adult=="Total") {
|
|
415 process_total_adults = TRUE;
|
|
416 }
|
|
417 }
|
16
|
418 }
|
6
|
419 # Initialize matrices.
|
10
|
420 if (process_eggs) {
|
|
421 Eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
422 }
|
23
|
423 if (process_young_nymphs | process_total_nymphs) {
|
10
|
424 YoungNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
20
|
425 }
|
23
|
426 if (process_old_nymphs | process_total_nymphs) {
|
10
|
427 OldNymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
428 }
|
23
|
429 if (process_previttelogenic_adults | process_total_adults) {
|
|
430 Previttelogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
431 }
|
|
432 if (process_vittelogenic_adults | process_total_adults) {
|
24
|
433 Vittelogenic.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
23
|
434 }
|
|
435 if (process_diapausing_adults | process_total_adults) {
|
10
|
436 Diapausing.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
437 }
|
8
|
438 newborn.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
439 adult.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
440 death.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
10
|
441 if (plot_generations_separately) {
|
|
442 # P is Parental, or overwintered adults.
|
|
443 P.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
444 # F1 is the first field-produced generation.
|
|
445 F1.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
446 # F2 is the second field-produced generation.
|
|
447 F2.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
448 if (process_eggs) {
|
|
449 P_eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
450 F1_eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
451 F2_eggs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
452 }
|
20
|
453 if (process_young_nymphs) {
|
|
454 P_young_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
455 F1_young_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
456 F2_young_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
457 }
|
|
458 if (process_old_nymphs) {
|
|
459 P_old_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
460 F1_old_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
461 F2_old_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
462 }
|
|
463 if (process_total_nymphs) {
|
|
464 P_total_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
465 F1_total_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
466 F2_total_nymphs.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
10
|
467 }
|
23
|
468 if (process_previttelogenic_adults) {
|
|
469 P_previttelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
470 F1_previttelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
471 F2_previttelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
472 }
|
|
473 if (process_vittelogenic_adults) {
|
|
474 P_vittelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
25
|
475 F1_vittelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
23
|
476 F2_vittelogenic_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
477 }
|
|
478 if (process_diapausing_adults) {
|
|
479 P_diapausing_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
480 F1_diapausing_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
481 F2_diapausing_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
482 }
|
|
483 if (process_total_adults) {
|
|
484 P_total_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
485 F1_total_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
|
486 F2_total_adults.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
10
|
487 }
|
|
488 }
|
|
489 # Total population.
|
8
|
490 population.replications = matrix(rep(0, opt$num_days*opt$replications), ncol=opt$replications);
|
5
|
491
|
6
|
492 # Process replications.
|
18
|
493 for (current_replication in 1:opt$replications) {
|
6
|
494 # Start with the user-defined number of insects per replication.
|
8
|
495 num_insects = opt$insects_per_replication;
|
6
|
496 # Generation, Stage, degree-days, T, Diapause.
|
8
|
497 vector.ini = c(0, 3, 0, 0, 0);
|
10
|
498 # Replicate to create a matrix where the columns are
|
|
499 # Generation, Stage, degree-days, T, Diapause and the
|
|
500 # rows are the initial number of insects per replication.
|
8
|
501 vector.matrix = rep(vector.ini, num_insects);
|
10
|
502 # Complete transposed matrix for the population, so now
|
|
503 # the rows are Generation, Stage, degree-days, T, Diapause
|
8
|
504 vector.matrix = base::t(matrix(vector.matrix, nrow=5));
|
5
|
505 # Time series of population size.
|
10
|
506 if (process_eggs) {
|
|
507 Eggs = rep(0, opt$num_days);
|
|
508 }
|
23
|
509 if (process_young_nymphs | process_total_nymphs) {
|
10
|
510 YoungNymphs = rep(0, opt$num_days);
|
23
|
511 }
|
|
512 if (process_old_nymphs | process_total_nymphs) {
|
10
|
513 OldNymphs = rep(0, opt$num_days);
|
|
514 }
|
23
|
515 if (process_previttelogenic_adults | process_total_adults) {
|
|
516 Previttelogenic = rep(0, opt$num_days);
|
|
517 }
|
|
518 if (process_vittelogenic_adults | process_total_adults) {
|
24
|
519 Vittelogenic = rep(0, opt$num_days);
|
23
|
520 }
|
|
521 if (process_diapausing_adults | process_total_adults) {
|
10
|
522 Diapausing = rep(0, opt$num_days);
|
|
523 }
|
8
|
524 N.newborn = rep(0, opt$num_days);
|
|
525 N.adult = rep(0, opt$num_days);
|
|
526 N.death = rep(0, opt$num_days);
|
|
527 overwintering_adult.population = rep(0, opt$num_days);
|
|
528 first_generation.population = rep(0, opt$num_days);
|
|
529 second_generation.population = rep(0, opt$num_days);
|
10
|
530 if (plot_generations_separately) {
|
|
531 # P is Parental, or overwintered adults.
|
|
532 # F1 is the first field-produced generation.
|
|
533 # F2 is the second field-produced generation.
|
|
534 if (process_eggs) {
|
|
535 P.egg = rep(0, opt$num_days);
|
|
536 F1.egg = rep(0, opt$num_days);
|
|
537 F2.egg = rep(0, opt$num_days);
|
|
538 }
|
20
|
539 if (process_young_nymphs) {
|
|
540 P.young_nymph = rep(0, opt$num_days);
|
|
541 F1.young_nymph = rep(0, opt$num_days);
|
|
542 F2.young_nymph = rep(0, opt$num_days);
|
|
543 }
|
|
544 if (process_old_nymphs) {
|
|
545 P.old_nymph = rep(0, opt$num_days);
|
|
546 F1.old_nymph = rep(0, opt$num_days);
|
|
547 F2.old_nymph = rep(0, opt$num_days);
|
|
548 }
|
|
549 if (process_total_nymphs) {
|
|
550 P.total_nymph = rep(0, opt$num_days);
|
|
551 F1.total_nymph = rep(0, opt$num_days);
|
|
552 F2.total_nymph = rep(0, opt$num_days);
|
10
|
553 }
|
23
|
554 if (process_previttelogenic_adults) {
|
|
555 P.previttelogenic_adult = rep(0, opt$num_days);
|
|
556 F1.previttelogenic_adult = rep(0, opt$num_days);
|
|
557 F2.previttelogenic_adult = rep(0, opt$num_days);
|
|
558 }
|
|
559 if (process_vittelogenic_adults) {
|
|
560 P.vittelogenic_adult = rep(0, opt$num_days);
|
|
561 F1.vittelogenic_adult = rep(0, opt$num_days);
|
|
562 F2.vittelogenic_adult = rep(0, opt$num_days);
|
|
563 }
|
|
564 if (process_diapausing_adults) {
|
|
565 P.diapausing_adult = rep(0, opt$num_days);
|
|
566 F1.diapausing_adult = rep(0, opt$num_days);
|
|
567 F2.diapausing_adult = rep(0, opt$num_days);
|
|
568 }
|
|
569 if (process_total_adults) {
|
|
570 P.total_adult = rep(0, opt$num_days);
|
|
571 F1.total_adult = rep(0, opt$num_days);
|
|
572 F2.total_adult = rep(0, opt$num_days);
|
10
|
573 }
|
|
574 }
|
8
|
575 total.population = NULL;
|
|
576 averages.day = rep(0, opt$num_days);
|
5
|
577 # All the days included in the input temperature dataset.
|
|
578 for (row in 1:opt$num_days) {
|
|
579 # Get the integer day of the year for the current row.
|
8
|
580 doy = temperature_data_frame$DOY[row];
|
5
|
581 # Photoperiod in the day.
|
8
|
582 photoperiod = temperature_data_frame$DAYLEN[row];
|
|
583 temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row, opt$num_days);
|
|
584 mean.temp = temp.profile[1];
|
|
585 averages.temp = temp.profile[2];
|
|
586 averages.day[row] = averages.temp;
|
5
|
587 # Trash bin for death.
|
8
|
588 death.vector = NULL;
|
5
|
589 # Newborn.
|
8
|
590 birth.vector = NULL;
|
5
|
591 # All individuals.
|
6
|
592 for (i in 1:num_insects) {
|
|
593 # Individual record.
|
8
|
594 vector.individual = vector.matrix[i,];
|
6
|
595 # Adjustment for late season mortality rate (still alive?).
|
5
|
596 if (latitude < 40.0) {
|
8
|
597 post.mortality = 1;
|
|
598 day.kill = 300;
|
5
|
599 }
|
|
600 else {
|
8
|
601 post.mortality = 2;
|
|
602 day.kill = 250;
|
5
|
603 }
|
6
|
604 if (vector.individual[2] == 0) {
|
5
|
605 # Egg.
|
8
|
606 death.probability = opt$egg_mortality * mortality.egg(mean.temp);
|
5
|
607 }
|
6
|
608 else if (vector.individual[2] == 1 | vector.individual[2] == 2) {
|
18
|
609 # Nymph.
|
8
|
610 death.probability = opt$nymph_mortality * mortality.nymph(mean.temp);
|
5
|
611 }
|
6
|
612 else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) {
|
|
613 # Adult.
|
5
|
614 if (doy < day.kill) {
|
8
|
615 death.probability = opt$adult_mortality * mortality.adult(mean.temp);
|
5
|
616 }
|
|
617 else {
|
|
618 # Increase adult mortality after fall equinox.
|
8
|
619 death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp);
|
5
|
620 }
|
|
621 }
|
6
|
622 # Dependent on temperature and life stage?
|
8
|
623 u.d = runif(1);
|
6
|
624 if (u.d < death.probability) {
|
8
|
625 death.vector = c(death.vector, i);
|
6
|
626 }
|
5
|
627 else {
|
6
|
628 # End of diapause.
|
|
629 if (vector.individual[1] == 0 && vector.individual[2] == 3) {
|
27
|
630 # Overwintering adult (pre-vittelogenic).
|
6
|
631 if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) {
|
5
|
632 # Add 68C to become fully reproductively matured.
|
|
633 # Transfer to vittelogenic.
|
8
|
634 vector.individual = c(0, 4, 0, 0, 0);
|
|
635 vector.matrix[i,] = vector.individual;
|
5
|
636 }
|
|
637 else {
|
27
|
638 # Add average temperature for current day.
|
8
|
639 vector.individual[3] = vector.individual[3] + averages.temp;
|
5
|
640 # Add 1 day in current stage.
|
8
|
641 vector.individual[4] = vector.individual[4] + 1;
|
|
642 vector.matrix[i,] = vector.individual;
|
5
|
643 }
|
|
644 }
|
6
|
645 if (vector.individual[1] != 0 && vector.individual[2] == 3) {
|
27
|
646 # Not overwintering adult (pre-vittelogenic).
|
8
|
647 current.gen = vector.individual[1];
|
6
|
648 if (vector.individual[3] > 68) {
|
5
|
649 # Add 68C to become fully reproductively matured.
|
|
650 # Transfer to vittelogenic.
|
8
|
651 vector.individual = c(current.gen, 4, 0, 0, 0);
|
|
652 vector.matrix[i,] = vector.individual;
|
5
|
653 }
|
|
654 else {
|
6
|
655 # Add average temperature for current day.
|
8
|
656 vector.individual[3] = vector.individual[3] + averages.temp;
|
5
|
657 # Add 1 day in current stage.
|
8
|
658 vector.individual[4] = vector.individual[4] + 1;
|
|
659 vector.matrix[i,] = vector.individual;
|
5
|
660 }
|
|
661 }
|
6
|
662 # Oviposition -- where population dynamics comes from.
|
|
663 if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) {
|
5
|
664 # Vittelogenic stage, overwintering generation.
|
6
|
665 if (vector.individual[4] == 0) {
|
5
|
666 # Just turned in vittelogenic stage.
|
8
|
667 num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size));
|
5
|
668 }
|
|
669 else {
|
|
670 # Daily probability of birth.
|
8
|
671 p.birth = opt$oviposition * 0.01;
|
|
672 u1 = runif(1);
|
5
|
673 if (u1 < p.birth) {
|
8
|
674 num_insects.birth = round(runif(1, 2, 8));
|
5
|
675 }
|
|
676 }
|
6
|
677 # Add average temperature for current day.
|
8
|
678 vector.individual[3] = vector.individual[3] + averages.temp;
|
5
|
679 # Add 1 day in current stage.
|
8
|
680 vector.individual[4] = vector.individual[4] + 1;
|
|
681 vector.matrix[i,] = vector.individual;
|
6
|
682 if (num_insects.birth > 0) {
|
5
|
683 # Add new birth -- might be in different generations.
|
8
|
684 new.gen = vector.individual[1] + 1;
|
5
|
685 # Egg profile.
|
8
|
686 new.individual = c(new.gen, 0, 0, 0, 0);
|
|
687 new.vector = rep(new.individual, num_insects.birth);
|
5
|
688 # Update batch of egg profile.
|
8
|
689 new.vector = t(matrix(new.vector, nrow=5));
|
5
|
690 # Group with total eggs laid in that day.
|
8
|
691 birth.vector = rbind(birth.vector, new.vector);
|
5
|
692 }
|
|
693 }
|
6
|
694 # Oviposition -- for generation 1.
|
|
695 if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) {
|
5
|
696 # Vittelogenic stage, 1st generation
|
6
|
697 if (vector.individual[4] == 0) {
|
5
|
698 # Just turned in vittelogenic stage.
|
8
|
699 num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size));
|
5
|
700 }
|
|
701 else {
|
|
702 # Daily probability of birth.
|
8
|
703 p.birth = opt$oviposition * 0.01;
|
|
704 u1 = runif(1);
|
5
|
705 if (u1 < p.birth) {
|
8
|
706 num_insects.birth = round(runif(1, 2, 8));
|
5
|
707 }
|
|
708 }
|
6
|
709 # Add average temperature for current day.
|
8
|
710 vector.individual[3] = vector.individual[3] + averages.temp;
|
5
|
711 # Add 1 day in current stage.
|
8
|
712 vector.individual[4] = vector.individual[4] + 1;
|
|
713 vector.matrix[i,] = vector.individual;
|
6
|
714 if (num_insects.birth > 0) {
|
5
|
715 # Add new birth -- might be in different generations.
|
8
|
716 new.gen = vector.individual[1] + 1;
|
5
|
717 # Egg profile.
|
8
|
718 new.individual = c(new.gen, 0, 0, 0, 0);
|
|
719 new.vector = rep(new.individual, num_insects.birth);
|
5
|
720 # Update batch of egg profile.
|
8
|
721 new.vector = t(matrix(new.vector, nrow=5));
|
5
|
722 # Group with total eggs laid in that day.
|
8
|
723 birth.vector = rbind(birth.vector, new.vector);
|
5
|
724 }
|
|
725 }
|
6
|
726 # Egg to young nymph.
|
|
727 if (vector.individual[2] == 0) {
|
|
728 # Add average temperature for current day.
|
8
|
729 vector.individual[3] = vector.individual[3] + averages.temp;
|
6
|
730 if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) {
|
|
731 # From egg to young nymph, degree-days requirement met.
|
8
|
732 current.gen = vector.individual[1];
|
5
|
733 # Transfer to young nymph stage.
|
8
|
734 vector.individual = c(current.gen, 1, 0, 0, 0);
|
5
|
735 }
|
|
736 else {
|
|
737 # Add 1 day in current stage.
|
8
|
738 vector.individual[4] = vector.individual[4] + 1;
|
5
|
739 }
|
8
|
740 vector.matrix[i,] = vector.individual;
|
5
|
741 }
|
6
|
742 # Young nymph to old nymph.
|
|
743 if (vector.individual[2] == 1) {
|
|
744 # Add average temperature for current day.
|
8
|
745 vector.individual[3] = vector.individual[3] + averages.temp;
|
6
|
746 if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) {
|
|
747 # From young to old nymph, degree_days requirement met.
|
8
|
748 current.gen = vector.individual[1];
|
5
|
749 # Transfer to old nym stage.
|
8
|
750 vector.individual = c(current.gen, 2, 0, 0, 0);
|
5
|
751 if (photoperiod < opt$photoperiod && doy > 180) {
|
8
|
752 vector.individual[5] = 1;
|
5
|
753 } # Prepare for diapausing.
|
|
754 }
|
|
755 else {
|
|
756 # Add 1 day in current stage.
|
8
|
757 vector.individual[4] = vector.individual[4] + 1;
|
5
|
758 }
|
8
|
759 vector.matrix[i,] = vector.individual;
|
6
|
760 }
|
27
|
761 # Old nymph to adult: pre-vittelogenic or diapausing?
|
6
|
762 if (vector.individual[2] == 2) {
|
|
763 # Add average temperature for current day.
|
8
|
764 vector.individual[3] = vector.individual[3] + averages.temp;
|
6
|
765 if (vector.individual[3] >= (200+opt$adult_accumulation)) {
|
|
766 # From old to adult, degree_days requirement met.
|
8
|
767 current.gen = vector.individual[1];
|
6
|
768 if (vector.individual[5] == 0) {
|
|
769 # Previttelogenic.
|
8
|
770 vector.individual = c(current.gen, 3, 0, 0, 0);
|
5
|
771 }
|
|
772 else {
|
|
773 # Diapausing.
|
8
|
774 vector.individual = c(current.gen, 5, 0, 0, 1);
|
5
|
775 }
|
|
776 }
|
|
777 else {
|
|
778 # Add 1 day in current stage.
|
8
|
779 vector.individual[4] = vector.individual[4] + 1;
|
5
|
780 }
|
8
|
781 vector.matrix[i,] = vector.individual;
|
5
|
782 }
|
6
|
783 # Growing of diapausing adult (unimportant, but still necessary).
|
|
784 if (vector.individual[2] == 5) {
|
8
|
785 vector.individual[3] = vector.individual[3] + averages.temp;
|
|
786 vector.individual[4] = vector.individual[4] + 1;
|
|
787 vector.matrix[i,] = vector.individual;
|
5
|
788 }
|
|
789 } # Else if it is still alive.
|
|
790 } # End of the individual bug loop.
|
6
|
791
|
|
792 # Number of deaths.
|
8
|
793 num_insects.death = length(death.vector);
|
6
|
794 if (num_insects.death > 0) {
|
|
795 # Remove record of dead.
|
8
|
796 vector.matrix = vector.matrix[-death.vector,];
|
5
|
797 }
|
6
|
798 # Number of births.
|
8
|
799 num_insects.newborn = length(birth.vector[,1]);
|
|
800 vector.matrix = rbind(vector.matrix, birth.vector);
|
5
|
801 # Update population size for the next day.
|
8
|
802 num_insects = num_insects - num_insects.death + num_insects.newborn;
|
5
|
803
|
10
|
804 # Aggregate results by day. Due to multiple transpose calls
|
|
805 # on vector.matrix above, the columns of vector.matrix
|
|
806 # are now Generation, Stage, degree-days, T, Diapause,
|
|
807 if (process_eggs) {
|
|
808 # For egg population size, column 2 (Stage), must be 0.
|
|
809 Eggs[row] = sum(vector.matrix[,2]==0);
|
|
810 }
|
23
|
811 if (process_young_nymphs | process_total_nymphs) {
|
10
|
812 # For young nymph population size, column 2 (Stage) must be 1.
|
|
813 YoungNymphs[row] = sum(vector.matrix[,2]==1);
|
20
|
814 }
|
23
|
815 if (process_old_nymphs | process_total_nymphs) {
|
10
|
816 # For old nymph population size, column 2 (Stage) must be 2.
|
|
817 OldNymphs[row] = sum(vector.matrix[,2]==2);
|
|
818 }
|
23
|
819 if (process_previttelogenic_adults | process_total_adults) {
|
|
820 # For pre-vittelogenic population size, column 2 (Stage) must be 3.
|
|
821 Previttelogenic[row] = sum(vector.matrix[,2]==3);
|
|
822 }
|
|
823 if (process_vittelogenic_adults | process_total_adults) {
|
|
824 # For vittelogenic population size, column 2 (Stage) must be 4.
|
24
|
825 Vittelogenic[row] = sum(vector.matrix[,2]==4);
|
23
|
826 }
|
|
827 if (process_diapausing_adults | process_total_adults) {
|
10
|
828 # For diapausing population size, column 2 (Stage) must be 5.
|
|
829 Diapausing[row] = sum(vector.matrix[,2]==5);
|
|
830 }
|
5
|
831
|
6
|
832 # Newborn population size.
|
8
|
833 N.newborn[row] = num_insects.newborn;
|
6
|
834 # Adult population size.
|
8
|
835 N.adult[row] = sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5);
|
6
|
836 # Dead population size.
|
8
|
837 N.death[row] = num_insects.death;
|
6
|
838
|
8
|
839 total.population = c(total.population, num_insects);
|
6
|
840
|
10
|
841 # For overwintering adult (P) population
|
|
842 # size, column 1 (Generation) must be 0.
|
8
|
843 overwintering_adult.population[row] = sum(vector.matrix[,1]==0);
|
10
|
844 # For first field generation (F1) population
|
|
845 # size, column 1 (Generation) must be 1.
|
8
|
846 first_generation.population[row] = sum(vector.matrix[,1]==1);
|
10
|
847 # For second field generation (F2) population
|
|
848 # size, column 1 (Generation) must be 2.
|
8
|
849 second_generation.population[row] = sum(vector.matrix[,1]==2);
|
5
|
850
|
10
|
851 if (plot_generations_separately) {
|
|
852 if (process_eggs) {
|
18
|
853 # For egg life stage of generation P population size,
|
10
|
854 # column 1 (generation) is 0 and column 2 (Stage) is 0.
|
|
855 P.egg[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==0);
|
|
856 # For egg life stage of generation F1 population size,
|
|
857 # column 1 (generation) is 1 and column 2 (Stage) is 0.
|
|
858 F1.egg[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==0);
|
|
859 # For egg life stage of generation F2 population size,
|
|
860 # column 1 (generation) is 2 and column 2 (Stage) is 0.
|
|
861 F2.egg[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==0);
|
|
862 }
|
20
|
863 if (process_young_nymphs) {
|
|
864 # For young nymph life stage of generation P population
|
|
865 # size, the following combination is required:
|
|
866 # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph)
|
|
867 P.young_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==1);
|
|
868 # For young nymph life stage of generation F1 population
|
|
869 # size, the following combination is required:
|
|
870 # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph)
|
|
871 F1.young_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==1);
|
|
872 # For young nymph life stage of generation F2 population
|
|
873 # size, the following combination is required:
|
|
874 # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph)
|
|
875 F2.young_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==1);
|
|
876 }
|
|
877 if (process_old_nymphs) {
|
|
878 # For old nymph life stage of generation P population
|
|
879 # size, the following combination is required:
|
|
880 # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph)
|
|
881 P.old_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==2);
|
|
882 # For old nymph life stage of generation F1 population
|
|
883 # size, the following combination is required:
|
|
884 # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph)
|
|
885 F1.old_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==2);
|
|
886 # For old nymph life stage of generation F2 population
|
|
887 # size, the following combination is required:
|
|
888 # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph)
|
|
889 F2.old_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==2);
|
|
890 }
|
|
891 if (process_total_nymphs) {
|
|
892 # For total nymph life stage of generation P population
|
10
|
893 # size, one of the following combinations is required:
|
|
894 # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph)
|
|
895 # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph)
|
20
|
896 P.total_nymph[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==1) | (vector.matrix[,1]==0 & vector.matrix[,2]==2));
|
|
897 # For total nymph life stage of generation F1 population
|
10
|
898 # size, one of the following combinations is required:
|
|
899 # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph)
|
|
900 # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph)
|
20
|
901 F1.total_nymph[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==1) | (vector.matrix[,1]==1 & vector.matrix[,2]==2));
|
|
902 # For total nymph life stage of generation F2 population
|
10
|
903 # size, one of the following combinations is required:
|
|
904 # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph)
|
|
905 # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph)
|
20
|
906 F2.total_nymph[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==1) | (vector.matrix[,1]==2 & vector.matrix[,2]==2));
|
10
|
907 }
|
23
|
908 if (process_previttelogenic_adults) {
|
|
909 # For previttelogenic adult life stage of generation P population
|
|
910 # size, the following combination is required:
|
|
911 # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
|
912 P.previttelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==3);
|
|
913 # For previttelogenic adult life stage of generation F1 population
|
|
914 # size, the following combination is required:
|
|
915 # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
|
916 F1.previttelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==3);
|
|
917 # For previttelogenic adult life stage of generation F2 population
|
|
918 # size, the following combination is required:
|
|
919 # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
|
920 F2.previttelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==3);
|
|
921 }
|
|
922 if (process_vittelogenic_adults) {
|
|
923 # For vittelogenic adult life stage of generation P population
|
|
924 # size, the following combination is required:
|
24
|
925 # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic)
|
23
|
926 P.vittelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==4);
|
|
927 # For vittelogenic adult life stage of generation F1 population
|
|
928 # size, the following combination is required:
|
24
|
929 # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic)
|
23
|
930 F1.vittelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==4);
|
|
931 # For vittelogenic adult life stage of generation F2 population
|
|
932 # size, the following combination is required:
|
24
|
933 # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic)
|
23
|
934 F2.vittelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==4);
|
|
935 }
|
|
936 if (process_diapausing_adults) {
|
|
937 # For diapausing adult life stage of generation P population
|
|
938 # size, the following combination is required:
|
10
|
939 # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing)
|
23
|
940 P.diapausing_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==5);
|
|
941 # For diapausing adult life stage of generation F1 population
|
|
942 # size, the following combination is required:
|
|
943 # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing)
|
|
944 F1.diapausing_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==5);
|
|
945 # For diapausing adult life stage of generation F2 population
|
|
946 # size, the following combination is required:
|
|
947 # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing)
|
|
948 F2.diapausing_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==5);
|
|
949 }
|
|
950 if (process_total_adults) {
|
|
951 # For total adult life stage of generation P population
|
10
|
952 # size, one of the following combinations is required:
|
23
|
953 # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
24
|
954 # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic)
|
23
|
955 # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing)
|
|
956 P.total_adult[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==3) | (vector.matrix[,1]==0 & vector.matrix[,2]==4) | (vector.matrix[,1]==0 & vector.matrix[,2]==5));
|
|
957 # For total adult life stage of generation F1 population
|
|
958 # size, one of the following combinations is required:
|
|
959 # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
24
|
960 # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic)
|
10
|
961 # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing)
|
23
|
962 F1.total_adult[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5));
|
|
963 # For total adult life stage of generation F2 population
|
10
|
964 # size, one of the following combinations is required:
|
23
|
965 # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic)
|
24
|
966 # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic)
|
10
|
967 # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing)
|
23
|
968 F2.total_adult[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5));
|
10
|
969 }
|
|
970 }
|
6
|
971 } # End of days specified in the input temperature data.
|
5
|
972
|
8
|
973 averages.cum = cumsum(averages.day);
|
5
|
974
|
6
|
975 # Define the output values.
|
10
|
976 if (process_eggs) {
|
18
|
977 Eggs.replications[,current_replication] = Eggs;
|
10
|
978 }
|
23
|
979 if (process_young_nymphs | process_total_nymphs) {
|
18
|
980 YoungNymphs.replications[,current_replication] = YoungNymphs;
|
20
|
981 }
|
23
|
982 if (process_old_nymphs | process_total_nymphs) {
|
18
|
983 OldNymphs.replications[,current_replication] = OldNymphs;
|
10
|
984 }
|
23
|
985 if (process_previttelogenic_adults | process_total_adults) {
|
|
986 Previttelogenic.replications[,current_replication] = Previttelogenic;
|
|
987 }
|
|
988 if (process_vittelogenic_adults | process_total_adults) {
|
24
|
989 Vittelogenic.replications[,current_replication] = Vittelogenic;
|
23
|
990 }
|
|
991 if (process_diapausing_adults | process_total_adults) {
|
18
|
992 Diapausing.replications[,current_replication] = Diapausing;
|
10
|
993 }
|
18
|
994 newborn.replications[,current_replication] = N.newborn;
|
|
995 adult.replications[,current_replication] = N.adult;
|
|
996 death.replications[,current_replication] = N.death;
|
10
|
997 if (plot_generations_separately) {
|
|
998 # P is Parental, or overwintered adults.
|
18
|
999 P.replications[,current_replication] = overwintering_adult.population;
|
10
|
1000 # F1 is the first field-produced generation.
|
18
|
1001 F1.replications[,current_replication] = first_generation.population;
|
10
|
1002 # F2 is the second field-produced generation.
|
18
|
1003 F2.replications[,current_replication] = second_generation.population;
|
10
|
1004 if (process_eggs) {
|
18
|
1005 P_eggs.replications[,current_replication] = P.egg;
|
|
1006 F1_eggs.replications[,current_replication] = F1.egg;
|
|
1007 F2_eggs.replications[,current_replication] = F2.egg;
|
10
|
1008 }
|
20
|
1009 if (process_young_nymphs) {
|
|
1010 P_young_nymphs.replications[,current_replication] = P.young_nymph;
|
|
1011 F1_young_nymphs.replications[,current_replication] = F1.young_nymph;
|
|
1012 F2_young_nymphs.replications[,current_replication] = F2.young_nymph;
|
|
1013 }
|
|
1014 if (process_old_nymphs) {
|
|
1015 P_old_nymphs.replications[,current_replication] = P.old_nymph;
|
|
1016 F1_old_nymphs.replications[,current_replication] = F1.old_nymph;
|
|
1017 F2_old_nymphs.replications[,current_replication] = F2.old_nymph;
|
|
1018 }
|
|
1019 if (process_total_nymphs) {
|
|
1020 P_total_nymphs.replications[,current_replication] = P.total_nymph;
|
|
1021 F1_total_nymphs.replications[,current_replication] = F1.total_nymph;
|
|
1022 F2_total_nymphs.replications[,current_replication] = F2.total_nymph;
|
10
|
1023 }
|
23
|
1024 if (process_previttelogenic_adults) {
|
|
1025 P_previttelogenic_adults.replications[,current_replication] = P.previttelogenic_adult;
|
|
1026 F1_previttelogenic_adults.replications[,current_replication] = F1.previttelogenic_adult;
|
|
1027 F2_previttelogenic_adults.replications[,current_replication] = F2.previttelogenic_adult;
|
|
1028 }
|
|
1029 if (process_vittelogenic_adults) {
|
|
1030 P_vittelogenic_adults.replications[,current_replication] = P.vittelogenic_adult;
|
|
1031 F1_vittelogenic_adults.replications[,current_replication] = F1.vittelogenic_adult;
|
|
1032 F2_vittelogenic_adults.replications[,current_replication] = F2.vittelogenic_adult;
|
|
1033 }
|
|
1034 if (process_diapausing_adults) {
|
|
1035 P_diapausing_adults.replications[,current_replication] = P.diapausing_adult;
|
|
1036 F1_diapausing_adults.replications[,current_replication] = F1.diapausing_adult;
|
|
1037 F2_diapausing_adults.replications[,current_replication] = F2.diapausing_adult;
|
|
1038 }
|
|
1039 if (process_total_adults) {
|
|
1040 P_total_adults.replications[,current_replication] = P.total_adult;
|
|
1041 F1_total_adults.replications[,current_replication] = F1.total_adult;
|
|
1042 F2_total_adults.replications[,current_replication] = F2.total_adult;
|
10
|
1043 }
|
|
1044 }
|
18
|
1045 population.replications[,current_replication] = total.population;
|
|
1046 # End processing replications.
|
5
|
1047 }
|
|
1048
|
10
|
1049 if (process_eggs) {
|
|
1050 # Mean value for eggs.
|
|
1051 eggs = apply(Eggs.replications, 1, mean);
|
27
|
1052 temperature_data_frame = append_vector(temperature_data_frame, eggs, "EGG");
|
10
|
1053 # Standard error for eggs.
|
|
1054 eggs.std_error = apply(Eggs.replications, 1, sd) / sqrt(opt$replications);
|
27
|
1055 temperature_data_frame = append_vector(temperature_data_frame, eggs.std_error, "EGGSE");
|
10
|
1056 }
|
|
1057 if (process_nymphs) {
|
|
1058 # Calculate nymph populations for selected life stage.
|
16
|
1059 for (life_stage_nymph in life_stages_nymph) {
|
28
|
1060 if (life_stage_nymph=="Young") {
|
16
|
1061 # Mean value for young nymphs.
|
|
1062 young_nymphs = apply(YoungNymphs.replications, 1, mean);
|
27
|
1063 temperature_data_frame = append_vector(temperature_data_frame, young_nymphs, "YOUNGNYMPH");
|
16
|
1064 # Standard error for young nymphs.
|
|
1065 young_nymphs.std_error = apply(YoungNymphs.replications / sqrt(opt$replications), 1, sd);
|
27
|
1066 temperature_data_frame = append_vector(temperature_data_frame, young_nymphs.std_error, "YOUNGNYMPHSE");
|
18
|
1067 } else if (life_stage_nymph=="Old") {
|
16
|
1068 # Mean value for old nymphs.
|
|
1069 old_nymphs = apply(OldNymphs.replications, 1, mean);
|
27
|
1070 temperature_data_frame = append_vector(temperature_data_frame, old_nymphs, "OLDNYMPH");
|
16
|
1071 # Standard error for old nymphs.
|
|
1072 old_nymphs.std_error = apply(OldNymphs.replications / sqrt(opt$replications), 1, sd);
|
27
|
1073 temperature_data_frame = append_vector(temperature_data_frame, old_nymphs.std_error, "OLDNYMPHSE");
|
28
|
1074 } else if (life_stage_nymph=="Total") {
|
|
1075 # Mean value for all nymphs.
|
|
1076 total_nymphs = apply((YoungNymphs.replications+OldNymphs.replications), 1, mean);
|
|
1077 temperature_data_frame = append_vector(temperature_data_frame, total_nymphs, "TOTALNYMPH");
|
|
1078 # Standard error for all nymphs.
|
|
1079 total_nymphs.std_error = apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd);
|
|
1080 temperature_data_frame = append_vector(temperature_data_frame, total_nymphs.std_error, "TOTALNYMPHSE");
|
16
|
1081 }
|
10
|
1082 }
|
|
1083 }
|
|
1084 if (process_adults) {
|
|
1085 # Calculate adult populations for selected life stage.
|
16
|
1086 for (life_stage_adult in life_stages_adult) {
|
28
|
1087 if (life_stage_adult == "Pre-vittelogenic") {
|
23
|
1088 # Mean value for previttelogenic adults.
|
|
1089 previttelogenic_adults = apply(Previttelogenic.replications, 1, mean);
|
27
|
1090 temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults, "PRE-VITADULT");
|
23
|
1091 # Standard error for previttelogenic adults.
|
|
1092 previttelogenic_adults.std_error = apply(Previttelogenic.replications, 1, sd) / sqrt(opt$replications);
|
27
|
1093 temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults.std_error, "PRE-VITADULTSE");
|
18
|
1094 } else if (life_stage_adult == "Vittelogenic") {
|
23
|
1095 # Mean value for vittelogenic adults.
|
24
|
1096 vittelogenic_adults = apply(Vittelogenic.replications, 1, mean);
|
27
|
1097 temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults, "VITADULT");
|
23
|
1098 # Standard error for vittelogenic adults.
|
24
|
1099 vittelogenic_adults.std_error = apply(Vittelogenic.replications, 1, sd) / sqrt(opt$replications);
|
27
|
1100 temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults.std_error, "VITADULTSE");
|
18
|
1101 } else if (life_stage_adult == "Diapausing") {
|
23
|
1102 # Mean value for vittelogenic adults.
|
16
|
1103 diapausing_adults = apply(Diapausing.replications, 1, mean);
|
27
|
1104 temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults, "DIAPAUSINGADULT");
|
23
|
1105 # Standard error for vittelogenic adults.
|
16
|
1106 diapausing_adults.std_error = apply(Diapausing.replications, 1, sd) / sqrt(opt$replications);
|
27
|
1107 temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults.std_error, "DIAPAUSINGADULTSE");
|
28
|
1108 } else if (life_stage_adult=="Total") {
|
|
1109 # Mean value for all adults.
|
|
1110 total_adults = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, mean);
|
|
1111 temperature_data_frame = append_vector(temperature_data_frame, total_adults, "TOTALADULT");
|
|
1112 # Standard error for all adults.
|
|
1113 total_adults.std_error = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications);
|
|
1114 temperature_data_frame = append_vector(temperature_data_frame, total_adults.std_error, "TOTALADULTSE");
|
16
|
1115 }
|
10
|
1116 }
|
|
1117 }
|
5
|
1118
|
10
|
1119 if (plot_generations_separately) {
|
20
|
1120 m_se = get_mean_and_std_error(P.replications, F1.replications, F2.replications);
|
|
1121 P = m_se[[1]];
|
|
1122 P.std_error = m_se[[2]];
|
|
1123 F1 = m_se[[3]];
|
|
1124 F1.std_error = m_se[[4]];
|
|
1125 F2 = m_se[[5]];
|
|
1126 F2.std_error = m_se[[6]];
|
10
|
1127 if (process_eggs) {
|
20
|
1128 m_se = get_mean_and_std_error(P_eggs.replications, F1_eggs.replications, F2_eggs.replications);
|
|
1129 P_eggs = m_se[[1]];
|
|
1130 P_eggs.std_error = m_se[[2]];
|
|
1131 F1_eggs = m_se[[3]];
|
|
1132 F1_eggs.std_error = m_se[[4]];
|
|
1133 F2_eggs = m_se[[5]];
|
|
1134 F2_eggs.std_error = m_se[[6]];
|
|
1135 }
|
|
1136 if (process_young_nymphs) {
|
|
1137 m_se = get_mean_and_std_error(P_young_nymphs.replications, F1_young_nymphs.replications, F2_young_nymphs.replications);
|
|
1138 P_young_nymphs = m_se[[1]];
|
|
1139 P_young_nymphs.std_error = m_se[[2]];
|
|
1140 F1_young_nymphs = m_se[[3]];
|
|
1141 F1_young_nymphs.std_error = m_se[[4]];
|
|
1142 F2_young_nymphs = m_se[[5]];
|
|
1143 F2_young_nymphs.std_error = m_se[[6]];
|
10
|
1144 }
|
20
|
1145 if (process_old_nymphs) {
|
|
1146 m_se = get_mean_and_std_error(P_old_nymphs.replications, F1_old_nymphs.replications, F2_old_nymphs.replications);
|
|
1147 P_old_nymphs = m_se[[1]];
|
|
1148 P_old_nymphs.std_error = m_se[[2]];
|
|
1149 F1_old_nymphs = m_se[[3]];
|
|
1150 F1_old_nymphs.std_error = m_se[[4]];
|
|
1151 F2_old_nymphs = m_se[[5]];
|
|
1152 F2_old_nymphs.std_error = m_se[[6]];
|
|
1153 }
|
|
1154 if (process_total_nymphs) {
|
|
1155 m_se = get_mean_and_std_error(P_total_nymphs.replications, F1_total_nymphs.replications, F2_total_nymphs.replications);
|
|
1156 P_total_nymphs = m_se[[1]];
|
|
1157 P_total_nymphs.std_error = m_se[[2]];
|
|
1158 F1_total_nymphs = m_se[[3]];
|
|
1159 F1_total_nymphs.std_error = m_se[[4]];
|
|
1160 F2_total_nymphs = m_se[[5]];
|
|
1161 F2_total_nymphs.std_error = m_se[[6]];
|
10
|
1162 }
|
23
|
1163 if (process_previttelogenic_adults) {
|
|
1164 m_se = get_mean_and_std_error(P_previttelogenic_adults.replications, F1_previttelogenic_adults.replications, F2_previttelogenic_adults.replications);
|
|
1165 P_previttelogenic_adults = m_se[[1]];
|
|
1166 P_previttelogenic_adults.std_error = m_se[[2]];
|
|
1167 F1_previttelogenic_adults = m_se[[3]];
|
|
1168 F1_previttelogenic_adults.std_error = m_se[[4]];
|
|
1169 F2_previttelogenic_adults = m_se[[5]];
|
|
1170 F2_previttelogenic_adults.std_error = m_se[[6]];
|
|
1171 }
|
|
1172 if (process_vittelogenic_adults) {
|
|
1173 m_se = get_mean_and_std_error(P_vittelogenic_adults.replications, F1_vittelogenic_adults.replications, F2_vittelogenic_adults.replications);
|
|
1174 P_vittelogenic_adults = m_se[[1]];
|
|
1175 P_vittelogenic_adults.std_error = m_se[[2]];
|
|
1176 F1_vittelogenic_adults = m_se[[3]];
|
|
1177 F1_vittelogenic_adults.std_error = m_se[[4]];
|
|
1178 F2_vittelogenic_adults = m_se[[5]];
|
|
1179 F2_vittelogenic_adults.std_error = m_se[[6]];
|
|
1180 }
|
|
1181 if (process_diapausing_adults) {
|
|
1182 m_se = get_mean_and_std_error(P_diapausing_adults.replications, F1_diapausing_adults.replications, F2_diapausing_adults.replications);
|
|
1183 P_diapausing_adults = m_se[[1]];
|
|
1184 P_diapausing_adults.std_error = m_se[[2]];
|
|
1185 F1_diapausing_adults = m_se[[3]];
|
|
1186 F1_diapausing_adults.std_error = m_se[[4]];
|
|
1187 F2_diapausing_adults = m_se[[5]];
|
|
1188 F2_diapausing_adults.std_error = m_se[[6]];
|
|
1189 }
|
|
1190 if (process_total_adults) {
|
|
1191 m_se = get_mean_and_std_error(P_total_adults.replications, F1_total_adults.replications, F2_total_adults.replications);
|
|
1192 P_total_adults = m_se[[1]];
|
|
1193 P_total_adults.std_error = m_se[[2]];
|
|
1194 F1_total_adults = m_se[[3]];
|
|
1195 F1_total_adults.std_error = m_se[[4]];
|
|
1196 F2_total_adults = m_se[[5]];
|
|
1197 F2_total_adults.std_error = m_se[[6]];
|
10
|
1198 }
|
|
1199 }
|
6
|
1200
|
27
|
1201 # Save the analyzed data.
|
|
1202 write.csv(temperature_data_frame, file=opt$output, row.names=F);
|
6
|
1203 # Display the total number of days in the Galaxy history item blurb.
|
8
|
1204 cat("Number of days: ", opt$num_days, "\n");
|
10
|
1205 # Information needed for plots plots.
|
8
|
1206 days = c(1:opt$num_days);
|
|
1207 start_date = temperature_data_frame$DATE[1];
|
|
1208 end_date = temperature_data_frame$DATE[opt$num_days];
|
5
|
1209
|
10
|
1210 if (plot_generations_separately) {
|
15
|
1211 for (life_stage in life_stages) {
|
10
|
1212 if (life_stage == "Egg") {
|
|
1213 # Start PDF device driver.
|
|
1214 dev.new(width=20, height=30);
|
19
|
1215 file_path = get_file_path(life_stage, "egg_pop_by_generation.pdf")
|
10
|
1216 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1217 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1218 # Egg population size by generation.
|
18
|
1219 maxval = max(P_eggs+F1_eggs+F2_eggs) + 100;
|
10
|
1220 render_chart(date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
|
1221 opt$replications, life_stage, group=P_eggs, group_std_error=P_eggs.std_error, group2=F1_eggs, group2_std_error=F1_eggs.std_error, group3=F2_eggs,
|
|
1222 group3_std_error=F2_eggs.std_error);
|
|
1223 # Turn off device driver to flush output.
|
|
1224 dev.off();
|
|
1225 } else if (life_stage == "Nymph") {
|
16
|
1226 for (life_stage_nymph in life_stages_nymph) {
|
|
1227 # Start PDF device driver.
|
|
1228 dev.new(width=20, height=30);
|
19
|
1229 file_path = get_file_path(life_stage, "nymph_pop_by_generation.pdf", life_stage_nymph=life_stage_nymph)
|
16
|
1230 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1231 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
20
|
1232 if (life_stage_nymph=="Young") {
|
|
1233 # Young nymph population size by generation.
|
|
1234 maxval = max(P_young_nymphs+F1_young_nymphs+F2_young_nymphs) + 100;
|
|
1235 group = P_young_nymphs;
|
|
1236 group_std_error = P_young_nymphs.std_error;
|
|
1237 group2 = F1_young_nymphs;
|
|
1238 group2_std_error = F1_young_nymphs.std_error;
|
|
1239 group3 = F2_young_nymphs;
|
|
1240 group3_std_error = F2_young_nymphs.std_error;
|
|
1241 } else if (life_stage_nymph=="Old") {
|
|
1242 # Total nymph population size by generation.
|
|
1243 maxval = max(P_old_nymphs+F1_old_nymphs+F2_old_nymphs) + 100;
|
|
1244 group = P_old_nymphs;
|
|
1245 group_std_error = P_old_nymphs.std_error;
|
|
1246 group2 = F1_old_nymphs;
|
|
1247 group2_std_error = F1_old_nymphs.std_error;
|
|
1248 group3 = F2_old_nymphs;
|
|
1249 group3_std_error = F2_old_nymphs.std_error;
|
|
1250 } else if (life_stage_nymph=="Total") {
|
|
1251 # Total nymph population size by generation.
|
|
1252 maxval = max(P_total_nymphs+F1_total_nymphs+F2_total_nymphs) + 100;
|
|
1253 group = P_total_nymphs;
|
|
1254 group_std_error = P_total_nymphs.std_error;
|
|
1255 group2 = F1_total_nymphs;
|
|
1256 group2_std_error = F1_total_nymphs.std_error;
|
|
1257 group3 = F2_total_nymphs;
|
|
1258 group3_std_error = F2_total_nymphs.std_error;
|
|
1259 }
|
16
|
1260 render_chart(date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
20
|
1261 opt$replications, life_stage, group=group, group_std_error=group_std_error, group2=group2, group2_std_error=group2_std_error,
|
|
1262 group3=group3, group3_std_error=group3_std_error, life_stages_nymph=life_stage_nymph);
|
16
|
1263 # Turn off device driver to flush output.
|
|
1264 dev.off();
|
|
1265 }
|
10
|
1266 } else if (life_stage == "Adult") {
|
16
|
1267 for (life_stage_adult in life_stages_adult) {
|
|
1268 # Start PDF device driver.
|
|
1269 dev.new(width=20, height=30);
|
19
|
1270 file_path = get_file_path(life_stage, "adult_pop_by_generation.pdf", life_stage_adult=life_stage_adult)
|
16
|
1271 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1272 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
23
|
1273 if (life_stage_adult=="Pre-vittelogenic") {
|
|
1274 # Pre-vittelogenic adult population size by generation.
|
|
1275 maxval = max(P_previttelogenic_adults+F1_previttelogenic_adults+F2_previttelogenic_adults) + 100;
|
|
1276 group = P_previttelogenic_adults;
|
|
1277 group_std_error = P_previttelogenic_adults.std_error;
|
|
1278 group2 = F1_previttelogenic_adults;
|
|
1279 group2_std_error = F1_previttelogenic_adults.std_error;
|
|
1280 group3 = F2_previttelogenic_adults;
|
|
1281 group3_std_error = F2_previttelogenic_adults.std_error;
|
|
1282 } else if (life_stage_adult=="Vittelogenic") {
|
|
1283 # Vittelogenic adult population size by generation.
|
|
1284 maxval = max(P_vittelogenic_adults+F1_vittelogenic_adults+F2_vittelogenic_adults) + 100;
|
|
1285 group = P_vittelogenic_adults;
|
|
1286 group_std_error = P_vittelogenic_adults.std_error;
|
|
1287 group2 = F1_vittelogenic_adults;
|
|
1288 group2_std_error = F1_vittelogenic_adults.std_error;
|
|
1289 group3 = F2_vittelogenic_adults;
|
|
1290 group3_std_error = F2_vittelogenic_adults.std_error;
|
|
1291 } else if (life_stage_adult=="Diapausing") {
|
|
1292 # Diapausing adult population size by generation.
|
|
1293 maxval = max(P_diapausing_adults+F1_diapausing_adults+F2_diapausing_adults) + 100;
|
|
1294 group = P_diapausing_adults;
|
|
1295 group_std_error = P_diapausing_adults.std_error;
|
|
1296 group2 = F1_diapausing_adults;
|
|
1297 group2_std_error = F1_diapausing_adults.std_error;
|
|
1298 group3 = F2_diapausing_adults;
|
|
1299 group3_std_error = F2_diapausing_adults.std_error;
|
|
1300 } else if (life_stage_adult=="Total") {
|
|
1301 # Total adult population size by generation.
|
|
1302 maxval = max(P_total_adults+F1_total_adults+F2_total_adults) + 100;
|
|
1303 group = P_total_adults;
|
|
1304 group_std_error = P_total_adults.std_error;
|
|
1305 group2 = F1_total_adults;
|
|
1306 group2_std_error = F1_total_adults.std_error;
|
|
1307 group3 = F2_total_adults;
|
|
1308 group3_std_error = F2_total_adults.std_error;
|
|
1309 }
|
16
|
1310 render_chart(date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
23
|
1311 opt$replications, life_stage, group=group, group_std_error=group_std_error, group2=group2, group2_std_error=group2_std_error,
|
|
1312 group3=group3, group3_std_error=group3_std_error, life_stages_adult=life_stage_adult);
|
16
|
1313 # Turn off device driver to flush output.
|
|
1314 dev.off();
|
|
1315 }
|
10
|
1316 } else if (life_stage == "Total") {
|
|
1317 # Start PDF device driver.
|
18
|
1318 # Name collection elements so that they
|
|
1319 # are displayed in logical order.
|
10
|
1320 dev.new(width=20, height=30);
|
19
|
1321 file_path = get_file_path(life_stage, "total_pop_by_generation.pdf")
|
10
|
1322 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1323 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1324 # Total population size by generation.
|
18
|
1325 maxval = max(P+F1+F2) + 100;
|
10
|
1326 render_chart(date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
|
1327 opt$replications, life_stage, group=P, group_std_error=P.std_error, group2=F1, group2_std_error=F1.std_error, group3=F2, group3_std_error=F2.std_error);
|
|
1328 # Turn off device driver to flush output.
|
|
1329 dev.off();
|
|
1330 }
|
15
|
1331 }
|
10
|
1332 } else {
|
|
1333 for (life_stage in life_stages) {
|
|
1334 if (life_stage == "Egg") {
|
|
1335 # Start PDF device driver.
|
|
1336 dev.new(width=20, height=30);
|
19
|
1337 file_path = get_file_path(life_stage, "egg_pop.pdf")
|
10
|
1338 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1339 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1340 # Egg population size.
|
18
|
1341 maxval = max(eggs+eggs.std_error) + 100;
|
10
|
1342 render_chart(date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
|
1343 opt$replications, life_stage, group=eggs, group_std_error=eggs.std_error);
|
|
1344 # Turn off device driver to flush output.
|
|
1345 dev.off();
|
|
1346 } else if (life_stage == "Nymph") {
|
16
|
1347 for (life_stage_nymph in life_stages_nymph) {
|
|
1348 # Start PDF device driver.
|
|
1349 dev.new(width=20, height=30);
|
19
|
1350 file_path = get_file_path(life_stage, "nymph_pop.pdf", life_stage_nymph=life_stage_nymph)
|
16
|
1351 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1352 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1353 if (life_stage_nymph=="Total") {
|
|
1354 # Total nymph population size.
|
|
1355 group = total_nymphs;
|
|
1356 group_std_error = total_nymphs.std_error;
|
|
1357 } else if (life_stage_nymph=="Young") {
|
|
1358 # Young nymph population size.
|
|
1359 group = young_nymphs;
|
|
1360 group_std_error = young_nymphs.std_error;
|
|
1361 } else if (life_stage_nymph=="Old") {
|
|
1362 # Old nymph population size.
|
|
1363 group = old_nymphs;
|
|
1364 group_std_error = old_nymphs.std_error;
|
|
1365 }
|
18
|
1366 maxval = max(group+group_std_error) + 100;
|
16
|
1367 render_chart(date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
|
1368 opt$replications, life_stage, group=group, group_std_error=group_std_error, life_stages_nymph=life_stage_nymph);
|
|
1369 # Turn off device driver to flush output.
|
|
1370 dev.off();
|
|
1371 }
|
10
|
1372 } else if (life_stage == "Adult") {
|
16
|
1373 for (life_stage_adult in life_stages_adult) {
|
|
1374 # Start PDF device driver.
|
|
1375 dev.new(width=20, height=30);
|
19
|
1376 file_path = get_file_path(life_stage, "adult_pop.pdf", life_stage_adult=life_stage_adult)
|
16
|
1377 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1378 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1379 if (life_stage_adult=="Total") {
|
|
1380 # Total adult population size.
|
|
1381 group = total_adults;
|
|
1382 group_std_error = total_adults.std_error
|
|
1383 } else if (life_stage_adult=="Pre-vittelogenic") {
|
|
1384 # Pre-vittelogenic adult population size.
|
|
1385 group = previttelogenic_adults;
|
|
1386 group_std_error = previttelogenic_adults.std_error
|
|
1387 } else if (life_stage_adult=="Vittelogenic") {
|
|
1388 # Vittelogenic adult population size.
|
|
1389 group = vittelogenic_adults;
|
|
1390 group_std_error = vittelogenic_adults.std_error
|
|
1391 } else if (life_stage_adult=="Diapausing") {
|
|
1392 # Diapausing adult population size.
|
|
1393 group = diapausing_adults;
|
|
1394 group_std_error = diapausing_adults.std_error
|
|
1395 }
|
18
|
1396 maxval = max(group+group_std_error) + 100;
|
16
|
1397 render_chart(date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
|
1398 opt$replications, life_stage, group=group, group_std_error=group_std_error, life_stages_adult=life_stage_adult);
|
|
1399 # Turn off device driver to flush output.
|
|
1400 dev.off();
|
|
1401 }
|
10
|
1402 } else if (life_stage == "Total") {
|
|
1403 # Start PDF device driver.
|
|
1404 dev.new(width=20, height=30);
|
19
|
1405 file_path = get_file_path(life_stage, "total_pop.pdf")
|
10
|
1406 pdf(file=file_path, width=20, height=30, bg="white");
|
|
1407 par(mar=c(5, 6, 4, 4), mfrow=c(3, 1));
|
|
1408 # Total population size.
|
18
|
1409 maxval = max(eggs+eggs.std_error, total_nymphs+total_nymphs.std_error, total_adults+total_adults.std_error) + 100;
|
10
|
1410 render_chart(date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, opt$location, latitude, start_date, end_date, days, maxval,
|
16
|
1411 opt$replications, life_stage, group=total_adults, group_std_error=total_adults.std_error, group2=total_nymphs, group2_std_error=total_nymphs.std_error, group3=eggs,
|
10
|
1412 group3_std_error=eggs.std_error);
|
|
1413 # Turn off device driver to flush output.
|
|
1414 dev.off();
|
|
1415 }
|
|
1416 }
|
|
1417 }
|