0
|
1 import argparse
|
|
2 import json
|
|
3 import pathlib
|
|
4 from datetime import datetime
|
|
5
|
|
6 """
|
|
7 Parse the configfile generated by the Galaxy tool.
|
|
8 This file is JSON-formatted and should be converted to a set of tabular files.
|
|
9 """
|
|
10
|
|
11 FILE_FORMAT = 'fastq'
|
|
12
|
|
13 parser = argparse.ArgumentParser()
|
|
14 parser.add_argument('--studies', dest='studies_json_path', required=True)
|
|
15 parser.add_argument('--out_dir', dest='out_path', required=True)
|
|
16 parser.add_argument('--action', dest='action', required=True)
|
|
17 args = parser.parse_args()
|
|
18
|
|
19 with open(args.studies_json_path, 'r') as studies_json_file:
|
|
20 studies_dict = json.load(studies_json_file)
|
|
21 studies_table = open(pathlib.Path(args.out_path) / 'studies.tsv', 'w')
|
|
22 studies_table.write('\t'.join(['alias', 'status', 'accession', 'title', 'study_type',
|
|
23 'study_abstract', 'pubmed_id', 'submission_date']) + '\n')
|
|
24 samples_table = open(pathlib.Path(args.out_path) / 'samples.tsv', 'w')
|
|
25 experiments_table = open(pathlib.Path(args.out_path) / 'experiments.tsv', 'w')
|
|
26 experiments_table.write('\t'.join(['alias', 'status', 'accession', 'title', 'study_alias',
|
|
27 'sample_alias', 'design_description', 'library_name',
|
|
28 'library_strategy', 'library_source', 'library_selection',
|
|
29 'library_layout', 'insert_size',
|
|
30 'library_construction_protocol', 'platform', 'instrument_model',
|
|
31 'submission_date']) + '\n')
|
|
32 runs_table = open(pathlib.Path(args.out_path) / 'runs.tsv', 'w')
|
|
33 runs_table.write('\t'.join(['alias', 'status', 'accession', 'experiment_alias', 'file_name',
|
|
34 'file_format', 'file_checksum', 'submission_date']) + '\n')
|
|
35
|
|
36 action = args.action
|
|
37
|
|
38 dt_oobj = datetime.now(tz=None)
|
|
39 timestamp = dt_oobj.strftime("%Y%m%d_%H:%M:%S")
|
|
40 for study_index, study in enumerate(studies_dict):
|
|
41 study_alias = 'study_' + str(study_index) + '_' + timestamp
|
|
42 studies_table.write('\t'.join([study_alias, action, 'ENA_accession', study['title'],
|
|
43 study['type'], study['abstract'], study['pubmed_id'],
|
|
44 'ENA_submission_data']))
|
|
45 if "geo_location" in study['samples'][0].keys(): # sample belongs to a viral sample
|
|
46 samples_table.write('\t'.join(['alias', 'status', 'accession', 'title', 'scientific_name',
|
2
|
47 'taxon_id', 'sample_description', 'collection date',
|
|
48 'geographic location (country and/or sea)', 'host common name', 'host subject id',
|
|
49 'host health state', 'host sex', 'host scientific name',
|
|
50 'collector name', 'collecting institution', 'isolate',
|
0
|
51 'submission_date']) + '\n')
|
|
52 else:
|
|
53 samples_table.write('\t'.join(['alias', 'status', 'accession', 'title', 'scientific_name',
|
|
54 'taxon_id', 'sample_description', 'submission_date']) + '\n')
|
|
55 for sample_index, sample in enumerate(study['samples']):
|
|
56 sample_alias = 'sample_' + str(sample_index) + '_' + timestamp
|
|
57 if "geo_location" in sample.keys(): # sample belongs to a viral sample
|
|
58 if sample['collector_name'] == '':
|
|
59 sample['collector_name'] = 'unknown'
|
|
60 samples_table.write('\t'.join([sample_alias, action, 'ena_accession', sample['title'],
|
|
61 sample['tax_name'], sample['tax_id'],
|
|
62 sample['description'], sample['collection_date'],
|
|
63 sample['geo_location'], sample['host_common_name'],
|
|
64 sample['host_subject_id'], sample['host_health_state'],
|
|
65 sample['host_sex'], sample['host_scientific_name'],
|
|
66 sample['collector_name'],
|
|
67 sample['collecting_institution'], sample['isolate'],
|
|
68 'ENA_submission_date']) + '\n')
|
|
69 else:
|
|
70 samples_table.write('\t'.join([sample_alias, action, 'ena_accession', sample['title'],
|
|
71 sample['tax_name'], sample['tax_id'],
|
|
72 sample['description'], 'ENA_submission_date']) + '\n')
|
|
73 for exp_index, exp in enumerate(sample['experiments']):
|
|
74 exp_alias = 'experiment_' + str(exp_index) + '.' + str(sample_index) + '_' + timestamp
|
|
75 lib_alias = 'library_' + str(exp_index) + '_' + str(sample_index)
|
|
76 experiments_table.write('\t'.join([exp_alias, action, 'accession_ena', exp['title'],
|
|
77 study_alias, sample_alias, exp['experiment_design'],
|
|
78 lib_alias, exp['library_strategy'],
|
|
79 exp['library_source'], exp['library_selection'],
|
|
80 exp['library_layout'].lower(), exp['insert_size'],
|
|
81 exp['library_construction_protocol'],
|
|
82 exp['platform'], exp['instrument_model'],
|
|
83 'submission_date_ENA']) + '\n')
|
|
84 run_index = 0
|
|
85 # exp['runs'] is a list of lists
|
|
86 for (base_run, run_files) in exp['runs']:
|
|
87 run_index += 1
|
|
88 if base_run != '':
|
|
89 run_alias = base_run
|
|
90 else:
|
|
91 # no alias provided, generated a unique one
|
|
92 run_alias = '_'.join(['run_' + str(run_index), str(exp_index),
|
|
93 str(sample_index)]) + '_' + timestamp
|
|
94 for file_entry in run_files:
|
|
95 runs_table.write('\t'.join([run_alias, action, 'ena_run_accession', exp_alias,
|
|
96 file_entry, FILE_FORMAT, 'file_checksum',
|
|
97 'submission_date_ENA']) + '\n')
|
|
98
|
|
99 studies_table.close()
|
|
100 samples_table.close()
|
|
101 experiments_table.close()
|
|
102 runs_table.close()
|